
ODYSSEY RESERRCH RSSOCIATES INC ITHACA NY J SELDIN
NOV 9? RRDC-TR-87-22

UCSSFIED F/G 12/2 MEEEEEEEEEEE
smhhhhhhhhhhh

S
U

* 0

S

S

.1~

HIN~ _'i~ ~~:z; S

11111 '*' I~ ___ 4

11111 I II B A IIiIIi~ -

JI~'*~** S S
___ ~It ~

SL
* 9

* 0

0

N ~ -w**w~ ~w w'~~ ~ '. -~ -. '~

(

h1FILE Cop.p0')

MATHESIS: THE MATHEMATICAL
FOUNDATION OF ULYSSES

F Odyusey Resemfrchl N .: -

DTIC
mlm m, ,LECTE 0

* MAY 0 219IM

H D

ROME AIR DEVELOPMENT CENTER
Air Force ystellm Command

Grtiflim Air ForM Bn, MY 13441-5700

~ ,,u

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-87-223 has been reviewed and is approved for publication.

APPROVED:

JOSEPH W. FRANK
Proj ect Engineer t

APPROVED:

RAYMOND P. URTZ, JR. .
Technical Director V.

Directorate of Command & Control

,S
FOR THE COMMANDER:

JOHN A RITZ
Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC (COTC) riffiss AFB NY 13441-5700. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or 5
notices on a specific document require that it be returned.

nm ,
UNCLASSIFI ED

SECURITY CLASSIFICATION OF THIS PAGE 3W

SForm Appoved
REPORT DOCUMENTATION PAGE o No. 0ove-o

Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
UNCLASSIFIED N/A

Za. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
NI/A Approved for public release; distribution

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE unlimited.
N/A

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

N/A RADC-TR-87-223

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Odyssey Research Associates (If applicable) Rome Air Development Center (COT C)

6c. ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)
1283 Trumansburg Road Griffiss AFB NY 13441-570u 0
Ithaca NY 14850-1313

8.. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

Rome Air Development Center COTC F30602-85-C-0098

8c ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
Griffiss AFB NY 1341-5700 PROGRAM PROJECT TASK WORK UNIT S

ELEMENT NO. NO NO CCESSION NO.
351670 1065 01 02 .

11. TITLE (Include Security Classification)

MATYESIS: THE MATHEMATICAL FOUNDATION OF ULYSSES r
12. PERSONAL AUTHOR(S)
Jonathan Seldin S
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 1S. PAGE COUNT

Interim FROM Apr 85 TOApr
8
7 November 1987 i68

16. SUPPLEMENTARY NOTATION

N/A

17. COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Computer Security lambda-calculus

12 02 ULYSSES constructive logic

12 07 Mathesis

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
-This is an interim report for the Computer Security Properties Modeling Environment

(ULYSSES) contract. This report is an introduction to MATHESIS, the underlying mathematical

foundation for ULYSSES. The theory of constructions is a form of generalized type assign-

ment to lambda-terms; hence, the paper begins with typed lambda-calculus and continues with S
the essentially equivalent idea of type assignment to untyped lambda-terms and its general-

izations. Because the theory of constructions is also based on constructive iogic and the

notion of formulas-as-types, a chapter on this subject is included. With this expository

preparation, the theory of constructions itself, along with its basic metatheory (including

the strong normalization theory and some of its consequences) is taken up. The paper closes

with a chapter on representing mathematics and logic in the theory of constructions. The

mathematics presented is that which is relevant to the ULYSSES' theory of security.

'P"?

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UUNCLASSIFIEDIUNLIMITED 0 SAME AS RPT ' DTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c OFFICE SYMBOL
JOSEPH W. FRANK (sl', ?0-32411 RADC (COTC)

Dorrn1473, ;UN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

0

0

Acknowledgments

I would like to thank Richard Platek, Gaxrel Pottinger, Tatiana Korelsky, and _
James Hook for their mary helpful comments and suggestions. Garrel Pottinger
was especially helpful in checking carefully the proof of the strong normalization
theorem in Chapter 4. Richard Platek wrote part of the Introduction.

Very special thanks are due to Owen Rambow for his creative work in translating
this work from its original form (written in 1st Word on an Atari ST) into TITEX,
and to Donna Simmons and Carlos Maymi for helping him.

Jonathan P. Seldin %

Ithaca, New York %

April 24, 1987

Acoession For
NTIS GRA&I{
DTTC TAB E]

Unanounced Li
Justificatlon

Distrib ution/
V Etllelo Availability Codes

Dist pia

0
U

Contents

INTRODUCTION 4

1 TYPED LAMBDA-CALCULUS 8
1.1 Type symbols and type structures 9
1.2 The typed A-calculus 12
1.3 The basic theory of typed A-calculus 17
1.4 'rhe Church-Rlosser t.heoreiit and pure A-calculus 21

2 EXTENSIONS OF TYPED LAMBDA-CALCULUS 23
2.1 T ype assignm ent 25
2.2 Type variables and princilal type scli.nc 35
2.3 Universal quantification over all types 37
2.4 The power of second order quantification 41 _
2.5 Generalized type assignient 45
2.6 The need for conversion rules 47
2.7 Basic generalized type assignent.... 50
2.8 Extended generalized type assigiinielt 53

3 CONSTRUCTIVE LOGIC 59
3.1 The D-calculus 61
3.2 Formulas-as-types 64
3.3 Adding A,V, and I (for -)) 66
3.1 Fxtension of forniulas-as-types 69
:3.5 First order quant.iliers 71 0
3.6 'Ihl(fu~ll theory of t~ypes 79 .:16Tefl hoyoftps..................................7

4 THE THEORY OF CONSTRUCTIONS 83
•1. 1 The tlheory of constructions: iai, ural dedtiction formulation 84
.1.2 The Iwa~sic metathbeory of th t'ie)ry of coistructions 87
1.3 The strong iiormalization t.heorei 106 0
1 (4 ousquices of the stroiig oiorinaliza.ion theorcm 123
1.5 'lhe I lier) of consl ructliis: sequnt foriiulat.ioi 128

21

AA

5 REPRESENTING LOGIC AND MATHEMATICS IN TilE THEORY
OF CONSTRUCTIONS 13-1
5.1 Representing logic with equality 135
5.2 Adding axioms to the theory of constructions 140
5.3 Representing arithmetic 144 5
5.4 Representing sets and functions 149

A LIST OF POSTULATES AND SYSTEMS 153

* SYSTEMS AND THEIR DEFINITIONS 156 gS 0

N!.

%

0

0,"-

, .'..r

Errata

The following typographical errors had unfortunately been overlooked in the docu-
ment entitled MATHESIS: the Mathematical Foundation for ULYSSES.

On page 40, the reference after Definition 2.11 should be to Definition 1.7.
On page 104, the last rule of the first proof diagram should be (Ve) rather thanI

(Vae). The next to last line of the second diagram should be

[,V/zM : [,V/z]B

and the third line following that diagram should read:

Here, the formula Ax : M . M : (Vz : C)B is the cut formula in the
reduction step.

Finally, on page 113 in the second line of the Convention, replace D, by D:.

3a

V.5t

INTRODUCTION
This work is an introduction to MATrIlESIS, tie underlying mathematical foundation

for ULYSSES. In ULYSSES one proves that models, designs and formal specifications of
information processing systems have security properties. For this to be meaningful it is
essential that the underlying automated mathematical foundation itself be sound. It is
a known fact that various design and program verification environments in widespread
use within the computer security community have faulty logics and implementations;
a knowledgeable user of these environments can exploit these flaws to prove false facts
about system. A less malicious user could inadvertently exploit these flaws and also prove r ,
false facts about systems. Machine certification of proofs is thus called into question .
when the certification mechanisms themselves are not appropriately certified.

There are two basic explana ons of these flaws. First, the informal theory which
stands logically prior to the theorem prover has not been adequately worked out. The _
purpose of this document is to work such a theory for the ULYSSES mathematical
component. In particular, we prove the formal consistency to this theory.

A second source of error occurs (I uring implementation. Many automated mathemat-
ical components and theorem provers evolve incrementally; new features are continually
added to make the theorem prover ever more powerful. Also specific algorithms are 0
replaced by inore efficient ones. Tiis maintenance, like most software maintenance, is F,
usually done in an ad hoc manner. Logical flaws have a way of slipping in during such
improvements. Our approach to this problem is to provide a iiathematical foundation
which in principal is much stronger than presently needed. The underlying logic is a true

mathematical foundation in that. the usual matheniatical entities, viz. sets, sequences,
functions, relations, etc., are all (hefiial)le in ternis of our ground entities. Future exte- 0
sions of the theorem prover consist i,, addi,,g definitions to the basic logic. The standard
basic theorems about the new entities (what a r, usually called axioms) are then provable .. ,

in the basic logic. -
We thus have two requirements for a mathematical foundation for verification: the " -'

informal theory needs to be worked oit prior to implementation; the foundational the- -

ory should be strong enough to support (lefinitional extensions which will encompass
a significant amount of inatheimatics. Several approaches to foundations satisfy these , .*,,',

requirements. Our specific choice w;Ls det'rmie(hI by several further requirements. First,
in ,,r(I,'r to ald comidence t, t.h,' c(,,,. ,'.s ,f rhe, immpleimeint.ationm it. wobhl be desirable
that I lie mderlvmig Iiidatitmis have, as fw mvwig part.s as possilble; i.e. the number

-%

%

0

of basic entities, constructors, axioms, etc. be small. Second, it. would be desirable for
the foundation to have computational content. 'hat is, within the logic mechanically
decidable statements should be distinguishable from undecidable ones and when state-
ments are decidable the decision procedures encoded in their proofs should be available
as computer programs. Logicians with a strictly mathematical background have not re- 0
quired this distinction; in computer science it separates the possible from the impossible.
The natural logic for such computable entities is called constructive logic. There are
cases where classical logic differs from constructive logic; namely some classically valid P

proofs cannot be made in constructive logic. On the other hand, there is an important
sense in which constructive logic is stronger than classical logic since the latter can be
interpreted in the former.

Since constructive logic is not well-known outside of certain subfields of mathematics
and computer science, a few words about it may be in order. If one proves in constructive
logic that something exists, then one must either give an explicit construction of that
thing or else give a set of directions for constructing it. It follows from this that although
in classical logic one is concerned only with truth and not how that truth is established,
in constructive logic one is concerned with provability and one takes nothing to be true ;, 0
unless one actually has or can obtain access to a proof of it. This requires the denial
of the law of excluded middle: A or not A. For if A is a statement that something
exists, then A or not A means that either there is a set of directions for constructing
that thing, or else there is a proof that, there can be no such set, of directions; this is
clearly not true. This makes constructive logic seem a bit strange to those who are not 0
used to it. Since constructive logic was first used in mathematics as one reaction to
the paradoxes of set theory and logic which were discovered at the turn of the century,
most examples of the difference between constructive and classical logic have generally
been mathematical examples. Such examples can be found, amlong other places, at the.
beginning of [l1ee851, whiich also ias otlier re feri'ces.

It might be worthwhile here to look at a ioninatlienatical example. he law of
excluded middle inight well lead a legislator to propose a criminal law in which there is
one penalty for a crime if A is true of thi particular case and a difl'erei(i penalty if A is
false. In classical logic, one is justified in concluding that if the crime covered by the law
is comnitted and there is a conviction, then one of the two penalties would be applied.
But, in practice this does not follow. For suppose it turns out to be extremely difficult
for the court system to decide whether or not A is true in a particular case. 'l'lein the
case may be appealed all the way to the Supreie Court, a process wliici can take years 0
(even more h-an a decade).)uring this tiie, neither penalty will Ie applied. Aid the
courts may wind up deciding that. A is so dillicult. to decide ihat Ile courts can not do
so constitutionally (as they niiglit, for example, if they conclude as a mhatter of fact, that
trying to decide A is so dificult, tha. it. is iimpossible to do so ift a way that does not
treat people arbitrarily); in this case, te original law would be tncons tit uional, and
so no penalty would be applied (even if it were not in dispute that the defendant. had
committed tie crime). IHere is a noinatieuiatical case in whichi the law of excluded
middle canI be doubted.

Note the relationshiIj betweeni the ,s, of cons iruct.ive I gic anid flit, ,iel to considr

%

how a decision can be miade. Constructive logic is oftenl thought. of as the logic of what%

can actually be done by computations if t.here are no limitations of time and space, and
this makes it particularly appropriate for reasoning about computing in a general setting.
In fact, this connection is the basis of Constable's Nupri proof development system, in
which executable programs are generated by proving mathematical theorems[C*86]. S

Because we are interested in a proof system, we are especially interested in referring %, %

to proofs. A good system of constructive logic in which proofs are mentioned explicitly hk

is the theory of constructions of Coquand [Coq85]1. This is a system of type assignment
to A-ternis; the prooffs are (roughly) represented by the teritis and the fornmilas by the,
proofs. Although the rules of the system are easy to state, the system is, in fact, the
result of a considerable evolution through a number of other systems of typed A-calculus, 0

and is best understood in the light of those systenms.
For this reason we shall not take up the theory of constructions itself until Chapter

4. Iii Chapter 1 we shall take a look at. typed A-calculus. I Chapter 2 we shall consider
deductive systems which assign types to A-terms without types. We shall consider the
basic system and and several of its generalizations. These generalizations include the
second-order polymorphic typed A-calculus2 , Martin-l,6f's theory of types3 , and gener-
alized type assignment in the style of [1IS861 Chapter 16. The theory of constructions '
is a forln of generalized type assignnent, and so readers will be in a position at the end
of Chapter 2 to proceed directly to the theory itself in Chapter 4.

lowever, to fully appreciate the theory of constructions, it is desirable to consider
both constructive logic and the idea of interpreting terns as proofs and types as for-
minilas. This idea, which is often called the Cut-ry-lloward isomorphism, was introduced
by a number of people independently, including [Ilow8O], who based the idea on an
observation of Curry [CF58], §9E, We take up this subject in Chapter 3. We begin in
Sect ions 3.1-3.2 with a simple calcmi isof constructive logic for implication forlnulas, and
show its relation to the simple system of type assignment. We then proceed in Sections
3.3-3.4I to extend the system to the other propositional connectives, and show that. the
law of excluded middle fails in this calculus of constructive logic. This is enough of •
tie chapter for a basic understanding of both constructive logic and the Curry-Iloward
isoniorphism, and many readers may want to proceed directly ^romn the end of section
3.4 to Chapter 4. However, some readers may want to see a treatment of predicate logic,
and in Sections :1.4 and 3.5, we present. versions of (constructive) first-order predicate
logic and higher-order predicate logic which illustrate the Curry-iloward isonmorphisin
and(look toward one of Coquand's motivations for creating the theory of constructions.

In (Chalpter 4, we comne to the theory of constructions itself. We give its rules in a
nat.ural deduct.ion fornlation, which is a bit (Iilrere,,t from time forni in which Coquand
gave theni but is more closely associated with the systems of type assignment mentioned-
in (Chapter 2. We then proceed to prove the main consistency theoremi for the system, .

the slrong norinalization thcor' mu. We next. show the relationship between the natural . c ,

Se, a tls[i I [C sX]. C 8 , (C71 , , ;,,. [, ,,,ut ,, ad [C:,,J.
*lh is system was introdued idepen t 'itly Iy (Girard [(GhI 71] and IReynolds [lRcy74] and studied J.

ext ensi xciy by A m ini(,r of pecaj De, incthidi,,g (I I ,) 3j. J%
'~,e[Mai-751 [I lax2j, [Mar5-81 C hapter XI 1f 4 (,~ Avid [C-861.

%
-I A

r

deduction formulation given Ihiere and t.,h original formulaliot of (: iqitd.
Finally, in Chapter 5, we take up the represent.atlioi of logic ad mat.,, n atics in

the theory of constructions. This is clearly necessary if this li)ry is Co serve as the
mathematical basis for MATIIESIS and the rest. of the ULYSSES project. This work
is all based on the work of Coquand and Iliet4 , but in addition to the definitions and
examples of the papers of Coquand and Iluet, we fiel a need to use the strong normal- .. %
ization theorem to give some proofs that. the repre-Ail.ations of logical and mathematical JI.2
concepts really behave correctly.

%- -'. .

N

,See [l ,I [C ll I i p a rti,'i la ,'.
%_'- ;%

7S

Chapter 1%

TYPED

LAMBDA-CALCULUS

'Ih A-calculus is a fundamental prototype for fuctional programming languages, and ,, ;

the yped -calculus is the natural typed vrsion. Hlere we shall consider as much of the .,°,:

typd) -calculus as we will need for the rest of the work. A general introduction to both .-, d

the A-calculus and the typed A-calculus can Ih found in llindley & Scldin [1tS86].,,% ,f_

Most of the systems we will consider will not have models in the usual set-theoretic ' -%

sense of that term. Hlowever, ordiary typed -calculus does have such models, and so 0

0

N

'4"
S -'3ILI

% 0)

1.1 Type symbols and type structures.

Types are used for various kinds of data structures in dilfereut progranmming languages.
lere, we will be concerned with certain particular coMIpoind type structhures which are
fairly common. They are: 1) the funclcon .pacc type o --. /i of functions with argumelits 0
in a and values in f, 2) the cartesian product it x i of two tyles a and 3, and 3) the
disjoint sum a + # of two types Y and /i.

For some purposes, the only kind of compoild type wr will Ibe it.resteod iu will he the
function space type. In other cases we will be interested in all three kinds of compound
types. rhis leads to the two kinds of type symbols iii the followiing definition:

Definition 1.1 (Type sytibol) Assume that we have (finitely or countably many)
atomic type symbols O,...,0,.. 'hen basic type symbols are defined as follows:

(a) Every atomic type symbol is a type symbol; and

(b) If a and 0i are type symbols, then so is (a-.I) '

Ertended type symbols are defined by (a) and: •

(c) If a and # are type symbols, then so are (,a -- f), (or x/i) and (a + '3).. .

Remark It might appear that the basic type symbols limit us to fumuctions of one
variable. rUhis appearaiice is false, for functiois of sevral variables caim by reduced to ,
functions of one variable by a process kiiow, as curTying (after II. H. (Curry, who used it
extensively; actually the process w;s used by others befort, (Curry). i'o se, how currying
works, consider time example

h (.r, y) y-1.

Iet h* be the one-place finuition whose' valhe h'(a) at, an ;argiimmmeuint. (I is ,litii'd to h,'
the function

f (y) = -y = h (, y). J

'hi'in we have
/,*(a)(!/) - M x , .), -" "

and we have replaced our original t.wo-place fI'ictiom by ;I ineW a I'muction (f one variale. 4
Our notal.ion will reflect. the proce,.s of currying. since

qti -- ',. - ,.. | .-
0

n* /|I •

w ill lbe ;mmIa ;bbreveait in for 0.'-

.Additional nobillon. lin 'xt..uldoe tYl' symihols, mmmgml'i','s;ry p:ar,'mli Imes will li,uuit tl. " "

lle inixes x 'am14 + will have a small,,r s ole lhi --. .-
A s a sve 'mani les for tlohse ty ', Svm ,,Isw,' , w 1. ss i iat , w it h ,ach tYl . ym hli il o a S.t . - .

%%

'IV 14 "., li

I

Definition 1.2 (Type structures) Assume that for each atomic type 0 there is a set
Do. Then we define D,, for each compound type symbol a as follows:

(a) D,_- is the set of all functions with arguments in D', and values in DO;
(b) D,, 3 is the cartesian product D(,x D# of DL, and DO; and S

(c) 1),+1 is the disjoint sum D,+Dj1 of 1), and D0.
A basic type structure is then defined to he the set

{ D1 is a basic type symhol).

An cxtended type structure is defined to be the set 0

{ Da is an extended type symbol).

It is usual in set theory to take for the cartesian product A x B the set of all ordered
pairs (a, b) where a E A and b E B3. This is not strictly necessary here: all we really
need is an operator dAB : A - B -. A x B and two operators fstAB : A x B - A and
sndAn : A x 1 - B such that fstAn(dAn(a,b)) = a and sndA,n(dA,n(a,b)) = b. It
is not strictly necessary that dA,li(a,b) be the pair (a,b), but we will usually think of
it that way, and so we will call it a pairing operator. 'l'he operators fStA, and sndAn %
will be called projection functions. If A and 1 are sets D,, and DO respectively, then
iistead of dAn, etc., we shall write da, etc.

The disjoint sum A + B is formed from A and B by making a copy in1A,B(a) of each
element a E A and a copy inrAn(b) of each b E !B in such a way that. each inla,I(a) is
distinct from each inrA,n(b), and then letting A + It be the union of all the copies. In
other words,

A + B = {inIA,,,(a)Ia E A) U {intAJI(b)lb E B).

(iven any element of this disjoint union, it is possible to tell which of the sets it originally
cani' from. It follows that there is, for any set C, a function. .

cascA,1.(' :A + I? - (A C) - (1 C) -. C,

.li Ol,,it if f A .- , .g :/3 -R (,a C A, ad , , then"

a n d 7 X
,.,,.,.f.,., (,,,,I,, (,), f, ,/) = :j(b).., ,:

As before, we shtall u ' lhe notation etaC se', (t.c.
(ften there is aln interest in a type which is emply. This type will he called void, -

and will, for ii w, be tak in as an at.omic type. /),;d will he the empty set.
lit some cases, we will want the type N of IIll, naltural numhers. This will also be an

;i ,1iI)yp-. aid 1)N will siIIIply Ie Ihe st of iatural iuibers. 'li(e successor fimctiomi
will h, ,I lo ' !v a.,, ;I yl, , ,,'rucinre does n,,t in,'hd, any s,.o 4,f irs ill which the, ;ir, e p irs,,,t , i,,. ,.,,,,,, r i , , ,,,,t' sut . u l l , ,,,,y i i ,
it w~lil t , irl g e'Icimieits are ini thu' saim' lype bill, thle s'condm(,'h'inviis aire ini ditfervil % .

10

011

1--4--

types. Thus, there is no nontrivial way in a type structure to make the type of the
second element depend on the first element rather lhan on the type of the first eleciat.
In particular, in a set of pairs whose first. elenimtas are natural numbers, all of the second
elements must be of the same type. (Of course, sets with pairs whose first elements have
the same type but whose second elements have different types can be formed by taking
arbitrary unions, but they are not part of a type structure as defined by Definition 1.2.) Sr

S
aN

S

0

0S

II S

1.2 The typed A-calculus.

So far, we have talked about structures consisting of sets and some functions associated
with them. Except for these functions and the natural numbers, we have not talked
about any of the elements of the sets. Here, we introduce a formalism of terms which 0
will represent these objects. The formalism we will use is the typed A-calculus.

The basic idea behind the A-calculus is the A-notation of Alonzo Church. The idea
is really simple: we are used to saying that if f represents the squaring function, so that
f W = z then f(2) = 2' = 4. We also sometimes say that this function f is given by

-- 2 . We might well ask why we do not write

(X X2)(2)= 22 -- 4.

The reason is that in the 1930s, Alonzo Church proposed writing

(Ax.x)(2) = 22 = 4. (1.1)

This is the basis of the A-calculus.
In the A-calculus, we use complete currying. In this notation, the term representing.,%-.

the function h" of §1 is
Az.Ay.h(z, y).

Since we are interested in terms representing objects in the sets of type structures, we
are really interested in the typed A- calculus. There are a number of forms of this system,
depending on which types we are using. Let us begin with the basic type symbols.

Definition 1.3 (Basic typed A-terms) Assume that we have infinitely many individ-
ual term varables, where each variable is assigned a type symbol in such a way tlat
there are an infinite number of variables assigned to each type, and suppose that z
indicates a variable of type (symbol) a. Then basic typed A-terns are defined as follows: 9
(a) each typed variable z is a typed term of type a;

(b) if M ' - O and N' are typed terins of types a -- 1 an(o resl)ectively, then
(A1 '-#No'Y is a typed term of type fi; and
(c) if x" is a variable of type a aid 'M3 is a term of type 13, then (Ax".AIO) ' - O is a terni-
of type a - 1.

A term of the form given by (b) is called am application termn. A term of the form given
by (c) is called anl abstraction termi.

Notation Parentheses will be omitted when no confusion results. For compound appli- -
cation terms, parentheses will be omilted by association to the left, so that

is a1) h)reviat ion for

-~ -y) y p)

N,)1.

((12

Superscripts indicating types will somietimes he omitted when the type is clear from the
context.

The notation
At N

will mean that "M" and "N" are names for the same term. 'This notation will be 0
especially used in definitions, such as I)efiuition 1..5 below.
Examples

(a) (Ax".rO)O --.G represents the identity function of t ype cf.
(b) If FP- 'Y and G"'- are terms of types /I- -t' and a--/ respectively, then
Ax.F#-Y(GG-Oxa) represents the composition of the functions represented by k'#-"
and G - P.

(c) AxZ- .Ay - .Az.z7-'Y(yG-Pz), which is a term of type (/- ') (a 8)
-- a -f, represents the operation of composition of functions of types a -- /3 and

(d) If Mais a term of type a and xAis a variable of type /# which does not occur free
in Ma(in the sense of Definition 1.4 below), then (AxO.M)O - a represents a constant
function whose value for each argument is the object represented by M'.
(e) AzG.Ay.x.a' , which is a term of type a - # - 7 represents the operator which forms
constant functions with arguments in fl alid value in a.

Definition 1.4 (Free and bound variables) An occurrence of a variable z' in a
term M is bound if it is in a part of Al of the form Ax".NO; otherwise it is free. If 0
x' has at least one free occurrence in M, it. is called a free v'ariable of Al. The set of all
free variables of M is called FV(Al). A Hosed lcnn is a term without any free variables.

If one of the atomic types is void, then by)efinition 1.3 there will be variables of this
type. lowever, it is the intention that there be no closed term of type void. A proof that
there is no closed term of type void is a kind of consistency result for typed A-calculus.

Definition 1.5 (Substitution) For a terni M#, a variable z", and another term N"
of the same type as the variable, the result of substituting N' for r' in MO, denoted

[N-I/"JIM1',

is the result of substitutinig N" for each free occurrence ofz" in A10 and changing bound S
variables to avoid clmshes. The precise definitio,,, by indliction on the structure of NI,,
is as follows, where soimIe type su perscripts are onitted:
(a) [N'/.zx - N";
(h) [Na'xjy4 y/' for all variables y/' distinct from x";(c) [N' * I Ilr- OQ") = ([N" Ix"]I"P-')([N"Q /al.]Q'); ''''

(d) [N1=_a,"P1 E •.1'
(e) [NAy] ' ")-. fN"/xj '' I' . d

if yjV r " and YqV PV(N") or x"V F'(PA); awld

13.

S.

()[NG/z'](Ay).1P 6) = Az".[N"Y/x'][z-v/yY]I)A
if yY A X' Y E FV(NG), x" E FV(P 6), and z" is the first variable with the same type
as y'i in a standard enumeration of variables which is not in FV(N*) or FV(P6).

If the type of N differs from the type of x, then [N/x]M is not defined.

We are now in a position to introdIuce a relation which corresponds to the process
of calculating values, as in (1.1) above. Th'lis relation is called reduction. The main
idea behind reduction is the instruction we asiways give beginners for evaluating f(x).
For example, if f(x) = x2, the instruction for evaluating f(2) is to replace x by 2, >
thus getting 22 = 4. This idea gives us the essential relation between a redex and its0
contractum in the next definition.

Definition 1.6 (Reduction) A (one-step) change of bound variable consists of the
replacement of a subterni of a term P"' of the form

Ar". A1

by

where y' FV(A'lfl). A rcdcx is a ternm of the foriii (AxJ.Ml)N*; its contractum is
[Na/x']MP3. A contraction. is the replacement of a redex by its contractumn in a term
(where the redex before the contraction and the contracturn after the contraction are
subterins of the term being contracted). A rcduction is a (possibly empty) sequence of 0
contractions and changes of bound variable. %A

If Ml redue fr(' o N, we write
A/ >~ N.

Definition 1.7 (Conversion) An crpans:on. is the reverse of a contraction; i.e., M
expands to N if and only if N contracts to M. A term M is said to convert to N if
N can be obtained from Al by a (possibly empty) sequence of contractions, expansions,
and changes of hound variabhle.

If Al converts to N, we write
Al =. A'.

Let, us now turn our attemitioii to thie other type-forming operators, x and +. For
teriis of type a x ;1, we need a p~airinig operator D,,, of type a a x fl. We will
also w~anit terms representing the p~rojection functions: we want fst,, and snd,p of types
a x / - a and a x /3 0 / respectively such that.

fst,,,O(D,,,,jAl" N/) > A!" aiid snd, (D,,j3 A" N') > V.

Tlo de'al with teris of type (v+ 31, we need teriiis inIa,i3, iflr,,,, andl case(,,O0 - of types
(Y - fi + /1' 8i - it + 11 and o 4- d/- (,, -- Y - (/3 - -) -7 respectively suich that

case,,. ii (1n,,.; .1 t,")' ~q~ f"'~Al"

%

J0

and
' casea,/ ,.y(inr,t#NP)fa-"YgP- 'f D> g '7N#.

We will also want to have natural numbers represented. This can be accomplished
by taking one of the atomic type symbols to be N and postulating atomic terms ONof

type N, a'N-Nof type N - N, and, to represent primitive recursive functions, Roof type
-4 (N ---+ c -- *a) -- N -- a such that

ReMaNN-a-'oN > M'e

and
RMONN -O(oNNnlN) t> NN-a-ajN(R.MQN N-a-alIN), 0

where nN is the term representing the natural number n, that is, is the term

a N-N(N-N(...(o'N-NoN) , (1.2)

where there are n occurrences of o"N -
N .

We are now ready to define extended typed A-terms. 0

Definition 1.8 (Extended typed A-terns) Assume that one of the atomic types is
N. Assume that we have individual term variables as in Definition 1.3 and that, in
addition, we have the following atomic constants for any types a, fl, and Y: D, of
type a --*/0 -* a x P, fste,p of type a x /3-- a, sndo,, of type a x We-/, inl#, of type
a --- a + , inr,p of type 4a + ,0, case,,,p, of type a + / - (a -40 - -)-

ONof type N, uN-Nof type N- N, and Re of type a--(N -.--. a) -. N--.a. An
atomic term is a variable or an atomic constant. Extended typed terms are defined as in
Definition 3 except that any atomiic ternis may occur in (a).

Definitions 1.4 and 1.5 hold for extended typed terms as well as for basic typed
terms. For reduction, we need some new kinds of redexes. The redexes of Definition 1.6
are called fl-rcdexes to distinguish them from the other redexes needed here. (Oil the -
significance of this name, see lindley & Seldin [11S86] Chapter 7)

Definition 1.9 (Reduction) Reduction is defined as in Definition 1.6 except that in
addition to /-redexes we now have the following additional redexes (given with their
contracta):

IR'dcx Contractum

(fst) fst,,j(1),,jMe N) M"

(snd) snd,, (O,,oM " N) Nif

(case,) casee,, . (inle,,p Al)f' -' gio -Y f"-'I At 0
(case 2) case.,,,(inre,# . "
(RI) ,M N All,
(R2) RoMaN N" " . . N-(oNNIN) NN-- nN(R,,AtO N-a-nN)

15 S'1
- -q ~ .r. ~ %9r.

where nNis the term given in (1.2) above.
Definition 1.7 now holds as before.

IV

S
S,-,

S

~• I

1.3 The basic theory of typed A-calculus

Let us begin with the theory of basic typed A-ternis of Definition 1.3.

Lemma 1.1 (Replacement) If an occurrence of a typed term P' in a typed term MO 0
is replaced by another tcrm with type ,i, then the: result is a typed term of type f.

Proof By induction on the structure of M's. *

Theorem 1.1 (Invariance of reduction) If A'> N, then N has type cf.

Proof By Lemma 1.1, it is sufficient to prove that types are preserved by changes of 0
bound variable and that a contractum has the same type as its redex. This will follow
in both cases from the fact that [NG/x"]Af is a term of type fl, and this latter fact can
be seen by applying Lemma 1.1 to the cases of 1)efinition1.5. U

We noted in Section 1.2 above that reduction corresponds to the process of evaluating
the result of applying a function to an argument. Since there are many well-known 0
calculations that never come to an end, we might expect to find typed A-terms that can
begin reductions continuing forever. In a trivial sense, most typed A-terms begin such
a reduction, since bound variables can be changed whenever they occur. But changing
bound variables does not really correspond to a calculation step; what we really want
to know is whether there is a typed terms with the property that every term to which
it reduces contains an occurrence of a redex. It turns out, that the answer is no. S

Definition 1.10 (Normal form) A term is said to he in normal form if there is no
occurrence of a redex in it. If MaC> N", where N" is in normal form, then N" is said
to be a normal form of MA".

Theorem 1.2 (Normal form thoriiti) Ivery basrc tpcd tcrn has a normal for;
i.e., every basic typed tern can be reduced to a torm its normal form.

Proof)efine the degree of a tylte-symbol to he the number of occurrences of the symbol
- in it, and define the degree ofa redex (Al: ' .M'0)N" to be the degree of the type o - 3

of the abstraction part of the redex. The proof is by an induction on the pair (d, n),
where d is the maximiin degre, ofa niy redex in the given tern at(l it is the numbher of
occurrences in the tern of redcxcs with degree d. The pairs are ordered by specifyiig S
that (d, n) < (d', t') if and only if either d < d' or else d = d' and n < it'. Since changing
bound Variables does not change the pair associated with a given terni, it is sufficientt to
concentrate on the contraction of redexes. At each stage a redex (a:". 1 1)N" is chosen
which has degree d and is such there is hio ocetirre,,ev in N ' of a redex of degree d. The, "
oily reelhx es of degree d in the coo I.ra.1iti [N"l' f" Al1 are sst.ii.,mition instances of -

t.hos," occurriig iit Al "; hitce, if he pair associated with tie original lerii is (d, mt), Iheli
the pair associaiL.d wil, the triti oit.ai,'d hy carrying out tiOw cont raction is (d, it - 1) if
11 > I and is (1l', 1u) for 1' < d if it I . (Note Iha. it can iever be 0.) Iliice, each such
ctottl.ractnleii lI'ads o a new termii with Ia pair lower iii the orlermigin I he original teri,

17 0

60

* S

and since the pairs under this ordering are well founded, it follows that the reduction
process must terminate in a term in normal form. U

Corollary 1.2.1 There is no closed basic typed A-term in normal form with an atomic
type.

Proof Let Pe be a closed term in normal form of type 0, where 0 is an atomic type.
Then Pa is not a variable, and since 0 is atomic, it is not an abstraction term. It follows
that P' is an application term. Suppose it has the form, PoP,... P,,, where P is not an
application term and type superscripts are omitted for convenience. (Every application
term can be written in this form.) If P0 were an abstraction term, then Pe would not
be in normal form. It follows that P is a variable, and hence p 9 is not a closed term,
contrary to hypothesis. U

This corollary shows that the normalization theorem gives us a kind of consistency
result. For if void is one of the atomic types, then it shows that there is no closed term
in normal form of type void. Since, as can be easily proved, reduction never introduces
any new free variables into a term, it follows that there is no closed term in any atomic
type, and hence there is none in void.

There is no problem about extending Lemma 1.1 and Theorem 1.1 to extended typed
terms. Furthermore, Theorem 1.2 can be extended to extended typed terms involving
(fst), (snd), (case,), (case 2), and (R I) redexes. But as soon as (R,) redexes are allowed,
there is a problem, for it is possible to have a subterm of the form RM"NN-PN
which is not a redex but which becomes a redex after contractions are carried out in
P" on redexes of lower degree. lowever, there is an alternative method of proof, which
is more complicated, which proves Theorem 1.1 for extended typed terms with (R2)
redexes. In fact, this stronger method of proof actually proves a stronger result for both
the basic and extended systems.

Theorem 1.3 (Strong normalization theorem) Every sequence of contractions 0
starting with a typed A-term term inales in a term in nornal form.

For the proof, see Ilindley & Seldin [11S86] Appendix 2.

Corollary 1.2.1 is clearly not true in the extended system with terms for the natural
numbers, since 0 N is a closed term in normal form with atomic type N. Ilowever, it is
possible to prove that there is no closed terni in void. The proof begins like the proof of t- 0
Corollary 1.2.1. but becomes more complicated at the point of analyzing PO, for now P
night be an atomic constant, and we need a case for each one. For example, we have
to consider the possibility that it is fst,,j. Furthermore, P has type (v x 13. Since P,
is in normal form and is closed, it must be of the form D ,,M"NO, contradicting the
assumption that P9 is in normal form. Similar arguments work for the other atomic
constants. This iproves:

Corollary 1.3.1 If one of the atomic types is void, thect there is no closed term of type
void.

* 0

We call also obtain a result concerning type N.

Corollary 1.3.2 Every closed terrn of typc N reduces to a niumcral; i.e., to a lcrn of
the form

oN-N (aN-N(...(tT N-NoN)...))

Proof Given a closed term of type N, let. pN he its normal form. The proof is by
induction on the structure of the term pN. Follow the proof of Corollary 1.3.1 through
the analysis of PO; there are now additional cases in which it may be ON, N-N, or R,.
If it is 0 N, we are done. Otherwise, the second or third argument must be a numeral by
the induction hypothesis, and so we either have another numeral or an (R) redex. M 0

We would now like to prove that the type structures introduced in section 1 form a
model of the extended typed A- term.s.

Definition 1.11 (Valuation) A valuation for a given type structure is a function which
assigns to each variable x'of type a an element p(x") of D,. If p is a valuation, then
[d/z 0]p, where d E D,, is the valuation r with the property that r(x*) = d and, for
each variable y3distinct from r', r(y 3) = p(yf).

Definition 1.12 (Assignment) For each valuation p and for each extended typed A-
term M, an object IMI,, called the assignient of Al determined by the valuation p,
or, when no confusion results, the assignment of Al, is defined as follows, where the
notation IMI is used when no confusion results:

(a) ID ,,,I is the function which, given dl C 1),, and d2 E D# as argliments, returns tile
value dpo(di, d2);

(b) IfsteAl = fsta.o : I),xf 0a;

(c) Isnd(aA = snd,,, : 1),, ,- D)11;

(d) inl,,, = inil,,# : I - D. +;

(e) linr,,pI = inr, : Da - D* +1;
(f) Icase.,,y-l = case,.,,#,.i : l).+0--- /),,_y, --i)/ _y, - 0-Y;

(g) JONI = 0;

(i) 1R,,1 is the function which, giveni all '',viiviii d E I). ;lld ;I fuiictioni I :

ON D --4 D,,, returns as a value le ftiiiclimi f : I)N - I),, with ithe property that
f (0) =d and f (n + 1) =h(n, f (ii));
0i) IAI'-'1NOI J- i'~I(IN"I) if tlii, iiskes seis (i.e., if JAI"I 1 is a fund ion and
N"I Is ali object. in its (hollail);

(k) JAr"4.A't01g, is the functin f I),,),wlhich, 116r each 'eniei d C I)d , - rettirti,
IA/I,., where r is [d/x"]lp.

Tlieorem 1.4 l,(or cach extcudid Ijpt-d A-Irins Al" (if tyli' , and for ,aib rabiattin p.
,A, C I),. I,,uhcu torc, if A/ N". Mt, ,AI"I IN",. -. .

9t S

0.

Proof The first part is proved by induction on the structure of M*. 'rle second part
is proved by showing that assignment is invariant of changes of bound variable and that
the assignment of any redex is equal to that of its contractum; this follows from Defini-
tion 1.12. N

2'p
. 0

1,(

"''

S.

w.

1.4 The Church-Rosser theorem and pure A-calculus.

As we have seen, every reduction sequence starting with a typed A-term terminates in
a normal form. But we might well wonder if different reduction sequences terminate
in different normal forms. In a trivial sense they do, since a change of bound variable S
applied to a normal form leads to a distinct normal form. But normal forms which differ
only in their bound variables are really essentially the same. What we would like to

know is whether or not there are any typed terms which have two or more truly distinct
normal forms. The answer turns out to be no: all normal formus of a given typed A-term
differ by only changes of bound variables. This result is a consequence of a theorem due
originally to Church & Rosser [CR36].

Theorem 1.5 (Churclt-Rosser Theorem) If M, N, and P arc tyLpd tcnns such that
P > M and P > N, then there is a tern Q such that M > Q and N > Q.

All known proofs of this theorem are too long and complicated to be given here. The V"
most readable proof is probably that of Rosser (Ros84] pp. 342-343. What is perhaps
most interesting about this proof (and ahnost all other published proofs) is that it
makes no reference to the type structure; it remains valid if all of the type superscripts
are deleted. In fact, the theorem is not really as much a theorem about the typed A-
calculus as it is a theorem about the A-calculus. This makes it worth taking a brief look
at the pure A-calculus.

0
Definition 1.13 (Pure A-terms) A.sume that we have infinitely many variables and
perhaps some constants. The,, the (pure) A-terns are defined as follows:

(a) Variables and constants are A-terms;

(b) If M and N are A-terms, then (AIN) is a A-term; and

(c) If x is a variable and At is a A-term, then (Ar.M) is a A-term.

Free and ho nd variables, substi I. ilon, re(diction, and conversiom iar,' delinod mrh as
for typed A-terms; the main difference is that typechecking is nol needd in smist il m 'i ,
or in forning application terms. Clearly, any typed A-term can he tramnsformed into
a pure A-ten,, by deleting the type superscripts. On the other hand. IhIere are, pure ,
A-terms to which no ty d A- terms correspond. For example, t he term

does not correspond to any typed term, si6ce there is no typed va rimhle x" with a ype ,
o .hat perm itIs the formalion of jr.r'. Filrt.hernore. til' terll

(A.r..rr)(Ax.x,r)

(ouitrac Is to itself, and so clearly has no nortial Form,. The term, ,

21-

Loa •0

contracts to
(Ax. .xxx) (Ax. x'x)(Ax'.. x. x),

aid so clearly hIas no normal forin. h'liese last two teris represent. computations that
do not terminate; the first one represents an infinite loop, and the second represents an
expanding infiniite loop. Nonterininating comiputatioiis cannot. be represented by typed V

The pure A-calculus differs froii the typed A-calculus in another respect. The typed ..
A-ternis have type structures as models. But the pure A-calculus does not have such
simple models in terms of set theory. The reason for this is that, I the pi ure A-calculus,
any term can be applied to itself: if At is a term, then so is (MM). But the standard
axioms of set theory prevent a set-theoret.ic function (iii the usual sense of a set of

ordered pairs) from being applied t.o itself. The typechecking required for the formation
of typed application terms is a sufficient restriction to ensure that the terms can be
modelled as, functions in the ordinary set-theoretic. seise. N

r-ft. ft.., 1

A.

0
% "V

0

.). .

or

22f

9W

S

Chapter 2

EXTENSIONS OF TYPED
LAMBDA-CALCULUS

S
V-7W

Although the typed A-calculus, which we saw in Chapter 1, is in an important sense the , l '
basis of the theory of constructions, the theory of constructions is not exactly a form of
typed A-calculus; it is actually a form of deductive system for assigning types to A-terms.
There are a number of such deductive systcms, and we will look at a several of them
in this chapter. The ones at which we will look will approximate a sequence of systems "
leading front the weakest, basic type assignment, to the strongest, which is the theory
of constructions itself.

We begin with a basic system of type aossigiment, TA, which is equivalent to the
ordinary typed A-calculus. This system is nmch weaker than the theory of constructions,
but its theory illustrates very well what. we will want later for tLhe tlory of construct ions
itself. This system and its theory are considered ii the first, two sectinis. We then
proceed ill the next two sections, to considhr the second order polyiiorhipic typed A-
calculus, which is oie of the best, kniown geiieralizat.ions of ordinary t.ype a.,-sigincliut
and is of considerable interest to computer scientists in connection with l)olyniorplhisin
il programming laugiuages. We "ill r'ec soiiie of t ie strength of this system.

The theory of comistructions is a form of what is usually called grcyralized type as-
signrnent, whicli we will coinsi(er ill the last fouir sections of tie chaper. We begin first 0
with a general description of the sort. of generalization that, is involved (Section 2.5), al,
we tiem' see (Section 2.6) why systems of this sort. re quire conversion oii the types. We

look at the basic system of gencralized type assigiiinient in Sectioi 2.7, aid we see that it -"

is, ill a senrse, a cons(rvative extenision of ordiniary type assignmeiit.. Finally, ill Section.
2.8, we look at soei stronger systmin." that point. the way to t he theory of construct ions; - - -"-

the znost. hinport.ait. of tiese is th(imiversal fraguiemit of the type theory of Martiu-l,6f.
but., as we shall set., tliis systeuli is iio t,ven st roiig enogh to interpret. the second order
polymuorplhic t.ylped A-calculuis, and we look at. how the foriuier syseni would have to hestreugtlluiid t~o intecrp~retI th. lattr.r \V' i,ill with somlin huitafions onl Iml' systemU wlhih;

P.

results from this strengthening and which are overcome in the theory of constructions
itself.

It is worth mentioning that it is desirable to interpret the second order polymorphic
typed A-calculus in systems of generalized type assignment because of the strength of
the former, which we will see in Section 2.4, and the fact that we have a method for 0
proving the consistency of the latter. In general, when we have a system which can
be proved consistent and in which we can interpret other systems, the latter systems
are shown to be consistent. As we shall see in Chapter 5, the consistency proof for the
theory of constructions leads to consistency results for the interpretations of a number
of useful theories from mathematics and logic.

0

V S

1 0 0

21 'Ack

2.1 Type assignment

In the typed A-calculus as defined above, terms without types cannot be forined. But in
most programming languages with type discipline, types play a different role: instead of
preventing terms from being formed, they pick out of a set of terms that already exist
tlmose terms that arc accep~table to a progranuning context (such as a compiler). The
terms exist independently of the types, and tile relationship between the types and thle
terms is established by a process of assigning types to terins.

It turns out to he easy to app~ly this app~roach to the A-calculus. We nced only assume
that we are dealing with the pure A-termns of D~efinition 1.13 and give a systeinmatic
procedure for assigning types to themi.

This procedure will take the form of a deductive theory or system. The formulas of
the system will all have the form

M :a

where M is a term and at is a type. The axioms will be formulas assigning types to
thle atomic constants if there are any. (For thme moment, let us make things simpler 0
by assuming that there are no atomic constants.) We also need to assign types to the
variables. In the definition of basic typed terms (D~efinition 1.3), we postulated that each
variable came with a type. Herc, we do not postulate this. Instead, we will postulate
that in any particular assignment, types are assigned to thle variables by assumption. In
general, I' will be a set of such assumptions; i.e., I' will be a set of formulas of the form

X a (, X2 : "2 , . ,, : ",,

where xi, x. _., x,, are distinct, variables and a,,....,.... a,, are types. '[lius. in
general, anl assignmen~t of a type to a terni is a deduction whose assumptions assign
types to the free variables in tme termn. I'lle statement that Al : n call be deduced fromn
a set, of asimiptions I' will be writteni

IP F Al:tn

If we look at the definitioni of pure A-terins, we will see that we have taken care
of assignting ty[pes to tile atomici terms (constants and variables). 'ro assign types to
comipoundl terins, we need rules. TUhese rules will have to correspond to the clauses
assigining types to applir -0ion termis anld abst.raction terms in thle definition of basic 0
typedl A -te r is, D efinmit.ion I.. IThey are! as follows:

(e) If I' F- At: a - 11 and I' F N : a, then I' F (AiN): i
(-) It* 1'. x: a F A! :13, where x does not occur free in r, then,

.1 I' Ax. At :oa-I
N ote ill th ie case of (-- i) , the conclIusion of t he rule (does not. dIepe mnd onl the assimip- Al

tLioll j : (v, w Ii ereas th le prei se does. We say th iat the assim nption is dischia rged by thec
rule. Thmis notion of dischIiarginmmg anl assu mip tioii is qite commnont in nuatuiiral led tic tion '

formulations of systems of logic, which were introduiced originally by iaskowski [iis:3.11
and Geiit-zei [Gemn31I and were extensively stutdied by lPrawitz [lPrati5Inli these systems.

25

%a

the above rules would usually be written as follows:

(-e) M :V--/3 N:a (-i) M :f0

MN Ax.M :a 1-,

where in (-. i), x does not occur free in any undischarged assumption, and where the
square brackets indicate the discharging of the assumption x : a by time rule.

Writing the rules this way is associated with writing deductions as trees, as the
following examples indicate:

Example 2.1 Ax.x : a - a for each type a.

Proof

[a, a] (--*i- 1)

Ax.x : a -a*

Here the brackets indicate the discharged assumption, and the number "I" is used to
indicate the location of the discharge. The importance of keeping track of the places at
which assumptions are discharged is shown in the following example: 0

Example 2.2 For any types a, fl, and 7, we have

, 7Ay.Az. Cz(yz) : (,v -- / - y) -- (v - a [3) - r. - y.

Proof

3 1 2 0

[.rt / - -Y] [or] [Y a-.0 [z :a]
(-.ce) (- ,')

xz : /3-yY : [

Axz(yz) (t
(-(4 ,,)

xs.LSz) a -. (-7 i 2)

Ay.Az.xz(yz) : (a - /1)-- i i -)

Air.Ay.Az..rz(yz) (a - -Y) -(f[3) -

I1 is important. (o note that. ani .;sL iiIl m which is discharged need not actually be
lisd (Cnsil'r ho, follhwig v'Xamlv:"-- ,

2 0

% e I4

Example 2.3 For any types a and /3, Ax.Ay.x : a /3 -.

Proof

Ixa
[x: ,]

(-.i -v)

Ay.AY. : a (- /, 1)-a ,,U 0
Ilere, the assumption discharged at the first step is y : ,6, which does not actually appear
in the deduction. The "- v" indicates this fact.

This method of writing deductions and proofs is common in logic and is appropriate
for theoretical purposes, as we shall see. But many non-logicians may be uncomfortable
with writing deductions as trees. An alternative is to write the deductions as tables.
The three examples given above can be written as follows:

Formula Rule Assimnptions

Example 2.1'
1. x : lyp I
2.)z"x : a - ,' 1 (-. i)

Example 2.2'

1 . : -a/3-*-y Ilyp I
2. y: (vk- Ilyp 2
3. z : a Ilyp :1
4. xz: 1-37 1,3(e) 1,3
5. yz -13 2,3 (e) 2,3
6. xz(qz) : 4,5 (e) 1,2,3
7. Az.xz(yz) : a--y 6(-i) 1,2
8.)Y.Az.Xz(:iZ) : (C -V/3) -a - y 7 (-, i) I
9. A..iz.x:tiyz) :8 (- i) S

Example 2.3'

1. .r: aIlyp I
2. A.x :/I--- Y(-i) I 0
31.)Aj.Atj.jr:o-4/ 2 (-ai

Note that here the discharge of a assiampl ion is idicated by tie removal of ius number 14

27

IVI

I 0

from tile last column, and that if (--+ i) is used without a change in the last column,
then the discharge is vacuous.

One feature of this kind of syztem is that these proofs can all be obtained by working
backwards. Let us see this for each of the three examples:

Example 2.1" We want to prove

F A.x:a--a.

The only rule of which this can be the conclusion is (- i), and the premise must be

x:a I- x : or.

But this is a trivial deduction consisting of an assumption. U

Example 2.2" We want to prove

F)u.Ay.Az.xz(yz) :(a *(a)- a -y.1

This must. be the conclusion of (- i), and the premise must be

x :n a-- -. Y - .Az.xz(y) : (a -) - -Y

This must also be the conclusion of (-. i) with the premise

x a - #/- Y' y : ,I F AY.Az.xrz(Yz) : a(Y .

This must also be the conclusion of (- i), and the premise must be

J, :a -j- -Y, .11 a,,- J3.:a F xz(yz):Y.

Now this must he the coucluisioim of (- e), and the premises must be S

.x : a -- Y , a I- 1z : :6-'-+ (2.1)

J: -.-- , : a - , z : F yz : 6 (2.2)

fbr some type 6. Now each of these imiusi. also be the conclusion of an inference by (-- e). S
The premises for (2.1) must. he

2,a - '-Y, Y: (z a F Y

for somue t)p, f, arid it is clear tht these dledt<ctiotis are trivial if 6 is /1 and c is a. 'l'hei
(2.2) mi ,l h,

9. , - '-.' -. -' - ./ z: !-.'- :f *%l, ~V V

J, (I Yz28.
. .. , .. ,,, ,. , . , , ,-,, % , . :: , - - , , r "'",,' '. " " ,, " "" "," ., %" ",.' _% " " "%;";V. '

0
and its premises must be

:a-/ - 7, y a / z, V I- y(---.

and
x : - / , y : a-V l, z :a, I- z:c,.

These two deductions also become trivial if (is i.

Exaiple 2.3" We need to prove

FAj-.Ayt.x : ax -13 -- kf. 0

This must be the conclusion of an inference by (-- i), and the preriise must be

x : v - Ay.z 11 (v.

This must also be the conclusion of an inference by (- i), and the premise must be

x : (a, ! : 13 F x : f Y,

which is a trivial deduction. 0

This style of finding deductions is called the refincinent style, and is close to the
usual method of iinplenenting on a comil)uter procedures for constructing proofs in this S
kind of system.

Let us give this system a nane. Note that for technical reasons, we need one addi-
tional rule which has not been needed in the above examples.

Definition 2.1 (The type-assignnctnt systoin TA) The systei TA is a natural de- 0
d,,ction system. Its formulas, called type- assigimitent formiulas, are the expressions of
the form

where A! is a pure terin and ,v is a (Ibasic) type synlol. There are io ;txioiis. 'Fhie rues

) .. p '."- .

29

7. dr.

are as follows:

(-.e) M :a--13 N: a

MN:fJ

(-- i) [: a] Condition: X : a is

A:d the only undischarged as-
___ _ suniption in which x oc-

Ax.M : a - curs free.

(=_) M : # Condition: N is obtained 0

N from M by change of
N : bound variables and M :/6

is not the conclusion of a
rule.

Note that rule (-) cannot occur in a deduction if all assumptions are of the form
x : a, where r is a variable. The rule is included to allow assumptions of other forms
and because we will need it in systems we will take up later.

There are several things to note about this system. The first is that deductions
invariably follow the construction of the term to which a type is assigned by the con-
clusion. This fact, which is easy to see, is difficult to write out as a formal theorem. ,

It is known as the subject-construction theorem; see Curry, Ilindley & Seldin [CHS72]
Theorem 14DI, p. 310. (The name comes from the fact, that the tern M in a formula
At : a is called the subject of the formula.) Nevertheless, it should be obvious from the
above examples. One result of this theorem is that it is fairly easy to determine the type
of any hound variable. Another is that it is decidable whether or not a given term has
a type. See the discussion in Iliidley & Seldin [11S86] Chapter 15.

By using the subject-construction theorem, we can obtain results for deductions in
TA corresponding to the results of Section 1.3 above for basic terms. First, we need to
define a basis as a set of asstimptions of the form

A variables-only basis is a basis in which (,'el Ai is a variable. Then, we have the
following analogue of Lemna I I:

Leimia 2.1 (Rellacenment) Let I', be any basis, and let V) be a deduction giving

I' FI-TA A'! .

L~t P be a term occurrence in At, and 1f Ax' ,.... Ax',, be those A 's whose scope contains 0
P. Let 7) eon fai a f, mala P : ti f/ic same position that ' has in the coistfructon
tIr? of A!, and 1l

310

0Ci

be the assumptions above 13 -y that are dischargcd by applications of (- i) below it.

Assume that P : -y is not in 1',1 Let Q be a Icin such that FV(Q) C FV(P), and let

12 be a basis in which x ,.. ,z, do not occur free such that

12, X1 : : .. ,, I- TA Q : _Y.

Let M* be the result of replacing P by Q in A. Then

I'1 U 1'2 fl' A A I .

Proof See ilindley & Seldin [IIS86] lenilnia 15.16. U

Using this lemma and the sulbject.-construction th eorem, it is easy to prove the fol-

lowing theorem:

Theorem 2.1 (Subject-reduction theorem) Lcl I' be a variables-only basis. If

I' 1VTA A:

and M > N, then
I' - N : (.

Proof See Ilindley " Seldin [II 86] Theore ' 15.17. U

From these results, we call see .hat t. ddutimns inl TA correspond to Lyped ter is in
tihe sense of l)elinnition 1.3.

Definition 2.2 (0 'rr ispn(lene v .tweeii (l(tluctions aii(l ternis) For each de-
duction 1) of TA, a typed terin IDI ill the se nse of I)efinition 1.3 whose typ1e is the
type of the consutlsion of T), is do'liled :1.s follows:

(a) If Al : (is an asslnilipt.ioli, then IM :'vI is a typed variadble x' of type a. This vari-
aile i nust. he so chosen th.at it, is not assig iwld i.o any other a su1ption whi ic ii to also

of lie forin Mca ; bit if M : (V is a disthargetd assumpntion when the saume variable ist it.

he Lssigned to any other assu tiptions of te fi,'n At : tr which art, discharged at the

salnle iifereance by (-. i);
(b) If PJ is

p p:,,--+ S:,,

At l : .i N o yn ,

A/ NM ' : .- ,

.%

(c) If P is L
Ixa

M~f

(.+i 1)
Ax.A :. 1

then IJV- Av '.iVI where v - Ix :aI.

(This is not quite a one-to-one correspondence because the condition on typed vari-
ables in (a) is almost impossible to satisfy with one definition for all deductions in a way
that is consistent with the changes of bound variables required to define substitution.
But for any small set of deductions, it is locally a one-to-one correspondence.)

This correspondence suggests that we define reduction steps for deductions as well
as for terms. These reduction steps turn out. to be similar to the D-reduction steps of
Prawitz [PraG(5] (see Section 3.3):

Definition 2.3 (/3-re(luction stes) for deduetions) A deduction of the form

Al /I
(-i I)

A,.AI :n./ N :a

(Aa.A)N :j /t

reduces to

N: 0
I), (N)

wher,, P', is o)taiIned fromji P:; by rlI;uilg ;ilI)rolpriahe o '¢lrreviIC s of (Ax.A)N Iby
[N x/ A1. acco r iig to l,eti,,, ,, 2 .! .

I rsing D)e ivili, oii i 2.3 , We (';i piv h l i' f)I1iwilig result:

:,.

Theorem 2.2 (Normalization tleorem for (le(luctions) Every deduction si T.A
can be reduced to a deduction which cannot be reduced further.

This can also be proved directly; see Ilindley & Seldin [1IS86] Theorem 15.31.
By the subject-construction theorem, it follows that if there is a deduction V of

M : a from a variables-only basis, and if there is a #-redex in M, then D can be reduced
by a #-reduction step for deductions. This gives us the following corollary.

Corollary 2.2.1 (Normalization thteorem for terms) Let F be a variables only ba-
sis. If

I' [_TA Ml " a,

then M has a normal form. 0

(See Ilindley & Seldin [ilS861 Corollary 15.31.1.)

A deduction which cannot be further reduced, which is usually called a normal
deduction, has the property that there is no inference by (-+ i) whose conclusion is the
major (left) premise for an inference by (- e). It follows from this that if one takes a
normal deduction (in tree form) and starts with any assumption, whether discharged or
not, then, as one proceeds down the tree, one cannot come to a major premise for an
inference by (-- e) below an inference by (-f i) unless one passes through a minor (right)
premise for an inference by (- e) in between. Let us define a branch of a deduction
to be a sequence A, A2, ... A of formula occurrences such that A, is a (discharged
or undischarged) assumption, for each i < n, Ai is the premise for an inference (but S
not the right premise for an inference by (--+ e)) and Ai+i is the conclusion, and A.
is either the conclusion of the deduction or else the right premise for an inference hy
(-- e). Then each branch consists of zero or ,more left premises for inferences by (- v)
followed by premiscs for inferences by (-. i). (Under certain circumstances, a bratich,
may begin with the premise for ait inference by (It follows that any deductiom
proceeds by breaking the types of the assumptions down into their constituent parts, .
and then piulting the parts back together to get. the type of tile conclusion. 'Flher are a
tulmbier of cote(lt'ellces of this fact, am ong thet a the following:

Corollary 2.2.2 (Subtype property) ht anl normal deduction tn '.4, every typ, ap-
pcarini tn a forimula of the deduction is a subtyie of the type of one of the assutnltiol.
or 'lse of the eomclusion.]

Another conseqtenc e of this structure of ,nortual de(htctots is Ile fi'llowilig:

Corollary 2.2.3 If the type of the conclusion of a normal deduction is atomic. thn) .
there is no inftrrncer by (-- i) tn th' leftmost branch (i.e., the branch that begi.ls 't---
the top left assavuuptzon and ends with the ronclusion of the deduction).

Re mar'k It. is not hardI to exletd this f.i'rory to extended tyl)iel A-t'rms. All we" I
it) do is to add sollic ew conistalnts ;aind assignt t 1eltl liWe' types Isillg axioll schel,'es a,
I; ,hews:

:33

U
) -In0

p 0

(D) D,,jj a a - (x/,

(fst) fst ,, a x [-- (Y,
(sn d) sndj (t x 11 - fl,
(inl) inl,,j o a + fl,
(inr) inr,: /fl a + 11,
(case) case.,., : ,v + /I - (a -. y) - (13-y) -y7,

(0) 0:N,
(a') " N N- N,

(R,) R,.: a - (N - a -) - N - a.

We also assume that these const.ant.s satisfy the contractions obtained from the first
four of Definition 1.9 by dropping type superscripts. For some purposes, as we shall see
in Section 3.4, we are riot interested in the constants 0, a,, and R". The system without
the constants 0, ff, and R,(and without the atomic type N) will be called extended TA.
The system with N, 0, or, and R,,will be called cxtended TA with arithmetic.

3 %

%
. -

.N.' ~

N v'
ii1

2.2 Type variables and principal type scheme

As we saw in Example 2.1 above, -

for every type it. It follows that if 0 is any atotic type, then

Ax. : 0 - 0.

It seems clear that any other type assigned to Ax.x call be obtained from the typo 0 - 0
by "substituting" some other type for 0. It, would be nice to formalize and generalize

this property of type-assignment.
The notion of "substitution" into a type would make more sensc if we hall t ypt,

variables. Hence, we extend Definition 2.1 as follows:

Definition 2.4 (Type. scelines) The atomic type constants or typc canstants will be
the atomic type symbols of l)cfinition I.1. We assume that we have infinitely inany typi,
variables, which will be denoted a, b, etc. Then typ I schr nes are defi l'd as follows: T-11Z

(a) Type constants and type variables are (atomic) type schemes;

(b) If a and 13 are type schemes, then so is (a -- /1).
A type is a type scheme in which no type variall,'s occijr. A type schenivmn ii is a s.hstu- W
lion instance of a type scheme it if 13 is obtained fromu o- by smihstitul.iiig types for typt' %

variables; i.e., if there are type variables a l, a and type1, schenms - ,,

such that

Froi now oil, we will assume that. 'IA is dlefined lising lype slivilles iilsteal of lyles.
Now the property of type assiglilielnt. that, we noted at. the blgililling of this sec-

lion call he foritulated l)y saying that any type or type scheigie assigli'(d to A'.r is ;t

substitutiton instancle of a - a. We are in.erest.ed ill knowig whici I s a'rllnse % si i1iI

a type schemel' with lie propert.y that, aiy other type se. hie :issigneim oOl Il r lht IPi

" sulstitutioli instAlinie of the given one. A type schvime with this prorly d l,,rv,. ;t
slpecial Ilall ie

Definition 2.5 (Principal type s(lienlie) Let. At be a choseI tverlml. Th.ii ; It V,

s'e lle,. ,V is calld a p ncipal li,,' schl nc (1.l.s.) of Al if anld ,,nly if

1-%t A/

holds for a type scheilie (v' whin alnd olly wh lli ' W' is 'k sulstil ii '('11 illtll. , of (I.

iW are igli"6-ig tr ih. ilmo gi ., . ,l X It ,uit 1 T. 'I ' sll ,il ftr Ii, will ii. . ;ll,.lit I
hi S','tj,., 2.41 t,,tI,,w.

5%
.17, I

i %

-me~e-j0

This definition clearly works onliy for closed terms; i.e., for terms with no free vari-
ables. For ternms with frcc variables, we neced to generalize this definitiont. First, we
define an FV(M)-basis for a term M to be a basis of the form

in which each Ali is a variable which occurs free in M.

Definition 2.6 (Principal pair) Let M be a term whose free variables are
X1, X2, *., - Then a pair (r,a) is called a principal pair (p.p.) of Al, and a a
p.t.s. of Al, if and only if r is anm FV(M)-basis and

I"ITA Al :a'

holds for an FV(M)-basis F' and a type scheme a' when and only when I" and a' are
obtained fromn F and a respectively by the same suhstitmtioti.

Examnple 2.4 Ax.r has p.t.s. a -a

Examnple 2.5 Ax.xx is not, assigned any type by TA.V

These examples should make it clear that thme following theoremr holds; its proof,
although simple in principle, is complicated to write out and will not be given here.
(See Ilindley & Seldin [11586] Tlheoremn 15.26 and Theorein 14.40.)

Thieoremi 2.3 (P.t.s. theoremx) Every pure A-terni M to which a type scheine is as-
signed by TA using only FV(Mf)-bast's has a pJt.s. and a pp.

* 'It is worth noting that the use of type variables nmakes it possible to make general
assertions. TIhe fact that A.x~ has as a p.t.s. a - a means Ohat it has type a -~ a for

all types (k. TIl s, a st atemnjemt such ai;s

HITA Axr.x :a - a

makes a statement about. all types a. Thlis samule inethod of making general statenments
about types is uised in the progranmming languaige Mi. (see Gordon et al. [?] and(Milnier
[NI1185] and [NI i1781).

36~

W,

2.3 Universal quantification over all types

We have seen how to use type variables to imake statements about all types. But the
system we have above is still ,ot, what is usually needed for making and using such
statements in a programming language. For exauple, in a language such as FORTRAN 0
or PASCAL, prograns; that differ only iii th, types of their variables need to be dupli-
cated and compiled separately. A lainguage siich as ML avoids this problen by usinig
type variables and having a rule of stlistitution for themlf. We could easily initale NJ !.
by adding a rule such ,is

A/ : a , w_

Al : [[//av, ,

but this seems to be ini some ways incompatible, with the subject-construction theoremu.
The alternative which suggests itself is to add ;it explicit universal quantifier.

A system with this explicit universal quantifier is already knuown; it was introduced
independently by Girard [Gir71] and Reynolds [ley74]. The definition of type is ex-
tended by specifying that if a is a type variable and a is a type, then (Va)a is a type. S
For this to make complete sense, we ne(ld to keep track of the types of bound variables;
tihus, if the type of x is a, then we shall writ, Aj':,* .M instead of Az.. For example.
the identity function on type a will now be written Ax:at .x. If we take the type to be
the type variable a, then we have, Ax:a .x, which has type a - a. Obviously, some term
related to this one should be in the type (Va)(a - a), atud the fact that the tertn has this
type should express the fact, that in TA a p.t.s. ,f AJr..x is a - (t. 'To construct the terni 0
we iieed, we add a new abstraction operator, froin a type variable a anid a term At. In , %
our example, the tern in (Va)(,t - a) is Aa . Axj:a . r. To go with this uew abstraction
operator, we need a new applicatioi: the result of applying a teri A4 to a type-schotne.
11 will be M[. In our example, w, will leav. the ern (Aa . Ar':t . 1r)/I, Which we e'Xlpect
to be assigned type l - I and to reduce to A.:if .. In genemral, we expect .o leave I lie
"" -cutit.ractLion of (At.AI)/I to 10/aIA .We :s,, Ia,, the following new ty pe assigiIe ln 1
rules:

(Ve) Al (V,,), (',e,, ,o,: /I is a 1I e. _

Al /I [;11/a]j

kVi) A : (I (o I,/l11o " a does not
occur fre' in any , ndis-

O"l, effe''ct. of these rules is to give us Imiion,, which take' t.ypes as argunitns. Suh
f jiie't.i,,es camm,,,!le,, r,'pr,'s,'|,'e l ie t lbe ,l,,, stretures of Sect.io, 2.1. See fle, e s'ceidl
note hefore Examleh 2.6 blow.

37

"

d

Z,(C, , C ,

-L & --- ,=."'

Note that wit.h our new notatioi, rlde (-) i) i5 1iow written as follows:

At :/

Ax:a, .A : (r - /.

The system defined this way is called the second-order polyinorplhic typed A-calculus, or,

for short, second-order A-calcuhis. 'l define it, we have the following formal definiit.ions:

Defixitioni 2.7 (Second-ord(er polyinorplik ty)(an(d typxe sclmnes) Assume

that we have some type conslant. and infinitely mnany type variables as in l)efinition 2.4.

Then second-order polymorphr type s-hcmcs are defined as follows:

(a) all type constants and type variables are type schemes;

(b) if a and 3 are type schemes, then so is (Y- /3); and

(c) if a is a type scheme and a is a type variable, then (Va)a is a type scheme. An

occurrence of a type variable a i i a t.ype scheme at is said to be bound if it is inside a

subtype scheme of the form (Va)ar; otherwise it, is free. A second-order pollinorphic type

is a second-order polymorphic type schemie in which every occurrence of a type variable

is bound. 'l'he set, of all type variables fre in v is called l"V(o).

Definition 2.8 (Second-order po)lyniorphiic A-terins) Assmne that we have in-

finitely many term variables, distinct, from the type variables, and perhaps some con-

stants, each constant. having a. type schinne assigned to it.. 'l'heii second-order polymor-

phie A-terms are defined as follows:

(a) every constant an(variable is a terin;

(h) if Al and N are terms, the, so is (AIN); S

(c) if xr is a variable, a a type scheme, and A a t.rrm, t.en (Ax :a . AI) is a tern;

(d) if Al is a terin and na is a type schi''ie, then Ala is a terimi and, i

(e) if a is a type variable aid At is a t('rmi, t,ei, (Aa. A) is a ternm.

An occurrence of a terni variable x itI a teri, I P is said to be bound if it is inside a

subterm of the forim Ax:(a . A/; otherwise it. is frce. An occtirreince of a type variable aI

in a termn P is bound if it. is inside a stibtriim of the form AamAV: otherwise it. is free. 'h 0

set of all term aid type variables fre' il A! is called I"V(A).

Definition 2.9 (SnIbstittitiolm) Sulhstittioti of terlns for termi variables and type

scheines for type variables is dhliiied imli ;is iII)etinitiomn 2.6; in particular, bouli.

terim and type variables are ailt.oliiat.ically Clialld I.l toavoid contlicts.

Definition 2.10 (Ciauig, of hoid variailes) A i/i (gc of bound variables in a

typ, sc,'hm'u or teri is aniy of tli' Ihll,,wiig rctil:ic',ii'ills:

(a) (Vu,),1 by (Vb)[b/,].'J if b I)

b %

.0 % % "

V. 0 %

t0

(b) Aa.Mby Ab.[b/a]Al if b IV(AI);

(c) Ax:. M by Ay:fI. [y x]M if y¢ FV(Al).

Defiuition 2.11 (fl-reduction) For terins P and Q, we say that P) /3-rcduccs to Q
(P ># Q, or P C> Q) if and only if Q is obtained from P by a finite (perhaps empty) 0
series of changes of hound variables and the following kinds of contractions:(PI) (Ax:(v. M)N C [N/xIM;

(Aa (.A1)u C p [c/a]M.

Conversion is defined from this rcduction ,as in)elinition 1.7.

Definition 2.12 (The tylx! assigiumait systm TAP) TAl) (second-order poly-
morphic type assignment) is a natural deduction system. Its formnlas are the type
assignment fornulas

M ,

where M is a se.cond-order polymorphic term (Definition 2.8) and a is a second-order

polymorphic type scheme ()efinition 2.7). TAP has axioms which assign types to atomic 0
constants if there are any; otherwise it. has no axioms. Its rules are as follows:

(-e) M :a -/t Na

AIN :11

(-i) [Ix CV] Condition: 0

At : 11 x is a terni variahh which

is not free it ally unii s-
A : --. A I charged assunption.

(Ve) M (Va)a Condilion: jI is a YIyp,
sc hiville.

(Vi) Al : Condition:
Aa.A1 (Va) a is a type varial e which

is not free in any undis-

charged ;assumpl ion. •

Al 1 C onditio,,: N iS ol,{amimi,.d

front At by chammges 4'
boumd v':riablv..

39'

:19 0

.;~

(',) M :13 Condition: -y is obtained
fron / by changes of "

M : 7 bound variables and M :/f

is not the conclusion of a 0
rule.

Notes

I. Rules (=) and (=) have not been postulated in the literature; however, it is
standard to ignore changes of bound variables and the rules seem necessary to for-
nealize this practice. Note that while rule (--) is restricted the way rule (=) is in
TA (Definition 2.1), rule (=) is not. In fact, if the latter rule were so restricted,
it would be impossible to deduce statements of the form Aa.M: (Vb)p3 unless a and
b were the same or there were an assurmption of this form.

2. As we saw above we now have functions which take types for arguments, which -

are not part of the type structures defined in Section 2.1, so these type structures
are not models for TAP. In fact, Reynolds [Rey84] has shown that there are no
models for TAP in which the types are interpreted as sets as in type structures.
There are models of TAP in terns of category theory, but many people who do not
know category theory do not find such models helpful. For computer scientists, it is
probably best to think of the teruis of TA 1) as having only computational meaning.

3. Some writers use a different notation: Al In} instead of Ml and Aa.M for Aa.M.
The notation used here does tiot hide any important distinctions which are not
clear from the con, et and is somewhat cleaner than the alternative.

Example 2.6 The informal discussion before)efinition 2.7 corresponds to the Following
formnal dleductlion in TAPi:

[:(-* i 1)

.r: x a -
An Aa x (Vti)((j) (Vi)

-aA : a . x) : 3 f l((W '

(Aa . Ax:a.i: -. /

Note t hat the terii in tlie cotichisioi r'(lhccs to A J':/1. x.

For the f'rther theory of TAP, i diihli, t-it, noriahi.tiou theorem, see Fortune el
;l [1-1083] amid Mitchell [MitX6]. I"For a proof of Ow (hurch-Hlosser theorem for the
r,., oi l de'litiel i, l),'fiiiiou 10, se %:,m I) ~lv:,ii fl);,:(01, !j [I,(.

-10

.It)

JLRIn~r&A V WN1.11 WI

2.4 The power of second order quantification

It might appear that the next order of business is to add the type forming operators x
and + and to arrange to add the new atomic type N. However, these additions turn out
to be unnecessary; for all of these can lic defined, as can their associated functions.

Definition 2.13 (Cartesian produet type) Let a andl 6 be any two type schemes in
TAP, and let a he a type variable which does not occur free in a or fl. Then the product
iype scheme at x 63 anid its associated pairing anid projection operators are defined as

follows:J

(a) a x 6 =- (V)((a-./-)-a);

(c) fst"'O Ax:a x /3xa(A\u:a . Av:o . u); and

(d) snd,,p =-Az:e x fl. x/3(Au:a . Av:11 . v).

It is not at, all difficult to prove that from these definitions we have

S

and

sndUpdD(,j1~Al N) =. N.0

Duliuaitioxi 2.14 (DisJoint 111111)1 typeC) Let. a~ anid a be aniy two type schernes in T[AlR

atid let a be a type variahle which does not. occur free in o or fl. TIhecn the disjoint unionj
type shneo+ 3mdisassociated injection and case operators are defined as flos

(d) case,,.j - Az:'v -i tl . Aa . Af:a* -- . -a . : -i af g.

It.is ayto how th1114-wE 14inif-tiolis imly
inlajq IV - n +

inro~i /I IV+ /1

aad
case,oj : a+ /I (Va)((a - a) -~(/ ~a) a)).

Furthermore, it is easy to show that, if y is any type scheme and if M, N, F, and G are
any terms assigned types a, /3, a - y, and 13 - -y respectively, then

and case.,j(inl,,,OjM)7/"(; =FI"M

and
caseq.(inr,,,jN)7"(; =. ON.

It turns out that we can also deflin, the type void:

Definition 2.15 (Void type) void - (Va)a.

Then if M : void, and if a is any type, then Ma : a. It follows that if M is any closed
term such that M : void, and if 0 is any type constant, then MO is a closed term assigned
type 0 . This together with the normalization theorem prove the following result:

Theorem 2.4 There is no closed lerm A4 sac/h that

-. aV At : void.

We can also define the natural minioer type N:

Definition 2.16 (Natural niunber type) (a) N - (Va)((a -; a) - (a a));

(b) 0 Aa . A:a- a . Ay:a . y; 0
(c) o, Au:N .Aa. Ax:a a. Ay:a . a:(uaxy);
(d) 7r Au:N . sndNN(u(N x N) Q(DN.NOO)),
where Q Av : N x N . DNN(oY(fstN,Nv))(fstN,Nv); and

(e) R Aa . Ax:a . Ay:N a a. Az:N . (N--- a)P(Aw : N. z)z,
where P - Av : N - a . A' : N . .(ir,)(v(r,)). The term n, which represents the
natural number n, is defined to b e4

if((.((a)...)), .

where there are n occurrences of 7.
It is not hard to show that.

0 N,

:N N,

r :N--N

an
R : (Va)(, -- (N - -- a) N - a).

It is also easy to show that

n -. Au A . :,, . .: ((..(.,)...)),._

(%

*1 N.J

0

where there are n occurrences of x after the last abstraction,

NO =" 0,

w(an) =. n, 0

and also, for any type scheme a and any terms M and N of types a and N -a a
respectively,

RaM NO =. Al,

anid

RaMN(ofn) =. Nn(RaMNn).

Finally, we can define an existential quantifier over all types to go along with our uni-
versal quantifier.

Definition 2.17 (Existential quantifier over all types) Let /3 be any type scheme,
and let a be a type variable, which may occur free in 6. Then the existential quantifier
over all types and its associated operators are defined as follows:

(a) (-a).? (Vb)((Wa)(/3 -- b) -b),

(b) single# = Ac. Ax:[c/afl. AI . Az:(Va)(/3-- b). zc,

(c) projectP =. Ax:(3a)3. Ab. Az:(Va)(/3--, b). zlbz.
It is easy to show that

single : (Vc)([c/a]#i-. (3a)a)

and
project# : (3a)fl - (Vb)((Va)(/ -- b) -- b).

It is also easy to show that if a and 7 are type schenes in which a does not occur free
and if M and F' are terms assigned types [a/ajfl and (Va)(fl--* y) respectively, then

project# (single a At)-y" =. P'aM.

Thus, we can think of singlep as a kind of singleton, or one-tulile, in which the object
has type [a/a]/3, and project# is as close as we can come to a project ion function. Note
that. the type for single3 tells us that if At is a term of type [a/a]3, tlien singlepirM is
in type (3a)/#, and the type for projecto tells us that if A! is a term of type (.a)i -, is ,.,' '

any type scheme it which a does not occur free, and F is a,,y term of type (Va)(j3 - f),
then projectAt -y1,' is in type -y; this gives us one of the important)rol)ert.ies of exist.eaic" '".,
ill logic, as we shall see ill Section 3..%

It might appear that we can obtain a true projction funictioi)y formi ng
projectJN-l" where /"A! ¢ . At. But this fails to work, for in this ras, F nmust he

the term
.a N . ,

AN

which has type (Va)([a/a] -3- [a/a]13), which means that a must be a and 'Y must be
[c/a]O, which is just 3 itself; thus, a occurs free in both a and 'Y, which violates the
conditions for the type of projectp given above.
Note Most of the terms defined in this subsection which have type schemes as param-
eters can be defined as terms representing functions applied to these type schemes. For •
example, if we define

D Aa. Ab. D.,b,

thcn for any type schemes a and #1,

DaOt =. D,,p.

This idea also works for fst, snd, inl, inr, case and R. It fails to work for singlep and
project# because of the type variable which occurs free in /P (in the interesting cases)
and which is bound in the definitions. Furthermore, since we do not have in TAP any
machinery for representing functions whose values are types, we cannot do a similar
thing for a x 13 or a + 6.

%

S

.I •.

S
. . . , , . .. ,, , ,G'K,

30

2.5 Generalized type assignment

Although the two terni-formig operators - and V may appear to be entirely distinct,
they can be made special instances of a more general type forming op~erator. This more
general operator is central to the theory of constructions. S

This more general operator is obtained by extending the meaning of "type" iii TA
by defining (Vx : a)fl to be a type whenever , and fli are types and x does not occur
free in a. lere, x may occur free i fl. Thus, the notion of type used here is much more
general than the notion of type in, TA. Hut let ui ignore this for tle moment and look
at the elimination an(l introduction rules for these types, which are as follows:

(V ,) M (W : (-V)13 N or

MN : [N/a:]3,

(Va i) [:] C,,,Co : x does not oc-
Al cur free ili , or ill anyA_ l discharged assiliptioll. i0

Ax:a . M (Vx : o)fI.

If x does not occur free in J3, theii (Vx : ,i)/l behave. just. like o -- w , al the above
rules become (-- e) and (-* i). HIence, if (V. : t),l is a type wlhmever o aind fl are types.
then a -/3 cal be defined to be (Vx : or) l br a variable x which does not. occur free in,
either a or fl.

Systems like this are called systems of geiieralized type assignmimi, and are covered
in Ilindley & Seldin [IISS6] Chapter It awlIi tIl e references given tIher. Note .ha .'
notation is different there, since what we are denoting by (Vx : ,V)#J is there dileotd b
Gor(Az.13), and what is there denoted by Gnfl is here denoted by (Vx : a)(/1x).

As we noted above, the definition of type imeeded for this sort, of system is iulich
more com)licat ed than that used in TA. In TA it is suflicient to deline lylws, atid (.XCIl)"
for type variablhs there are no variables which occur in types. lil here. ili crder to
have a system which is really more interesting than TA, it is niecessary lo have types iii
which term variables occur. 'rhis means, i,, effect,, that we eed not. oiily typ"s, bli t ;dlso
functions whose values are types. Hence, any formalism for geieralized type ;issigniiinil
imust include teriis repres nt iiig such fiiictions.

Systems of generalized t.y pe assignimenti. call he classilied by Ihe kinds of ftim i s Iii- T-

they have whose values are types, and ii, particular by what, kinds ,f don aiis s ,'h-i
functions can have. 'T'lie simplest assuml .tio tIo mak' about. such flnlions is that Ite
domains are all universal; i.e., if n is ay type function of it irgiiUnits M11(l is aniu trim
whatsoever, then Al is a type function of n -- I argimini.s (where, of cors,, 1 > I).
A system of this sort. is called b;sic ge,,eralized type assigimie.,. aid we shall 1h.,k ;-i
such systemls ili Section 2.7. 'l'he ,only ilternat.ive is to allow hiiicli)ns whlos,' %';iil,
are types over restricted doinaiis. One possibility, for eXample, is 1,1 allow functiom,
who-e values are types whei the argulnit.s are iat.ral lniinibers. hill inl nme'ess:irilv

15

:%
% -
VI 1~

othierise. lIncludinig functions of this kind comrplicates thc defiitionl of tile systems:
either thle defiition of type and type function mnust list. eachi restrictedI domain used,
or else the machinery of type assignment itself must, be used to define tile functions
involved. We shall see miore about this in Section 2.8.

%

& I.
A, -u%0

SF

2.6 The need for conversion rules

Before we proceed, we need to consider the question of conversion. In TA, we have the
subject-reduction theorem (Theorem 2.1), which says that type assignment is invariant of
reduction. As we shall see below, a similar result holds for generalized type assignment.
For this reason, we have not paid attention to conversions amiong terms to which types
are assigned. Furthermore, in TA, the structure of the types is so simple that the
question of conversions between types just does not come il). But in generalized type
assignment, the structure of types is more complicated, and so interesting conversions
arise.

The best example of this call be seen in terms of the system TA(;IJ of Section 2.8 •
below (Definition 2.24). Suppose one of the types is U of that system, and suppose
we internalize the definition of -- (which we discussed in Section 5) as follows (using
Curry's notation):

F = Au:U . Av:U . (V : u)v.

It is not hard to show that F has type (Vu : U)(Vv : U)U. Now suppose we have, for
a d: U aid U, U

A4 : Fa/li
Ny ~.

andN:

We would like to be alle to conchde

AlIN :/1.

Iowever, to do this wilih uir ruhs requires

Al :(Vx (V)/W ,

whereas all we have is 0
At : (A U: t :U . (Vx : u) ,,l.'

II. is true that this latter type converts to (Vr : o1)#i, htl with Ii, rulvs we have so far
this is no help.

To solve this probleim, we inttr(xlice the foll, wing rule:
(l ~ q) A l, : r (I . 1 t

W.

(On the reason for the name of guIms rul,, see [I iiilley &' Seldill [ISA6] Sectioni I.l'E.)
This rifle is often written as follows:

Al.'a.%.

1t. 1., easy to reconistruct I lie, right. preliiso.

'7

/il , (I,,(')i •

I S

I A

It might appear that the introduction of this rule signilicantly complicates the nature
of deductions and raises problems with the subject-construction theorem. But in fact it
is possible to limit, the places in which this rule is used:

Theorcin 2.5 In a system of generalized type assignment in which the rules are (Va e),
(Va i), (=',) and (Eq"), (and in which there may be axioms), any deduction can be trans-
formed into another deduction with the same undischarged assumption and conclusion
in which each inference by rule (Eq")occurs either just above the major (left) premise
for an inference by rule (Va e) or else just above the conclusion.

Proof This follows from the fact that the following transformations can be carried out •
systematically throughout any deduction:
I.

[x: a]

(Eq")
M Y

(Va i 1)
Aj':cv M :(Vx :()-

to

tx : V]
V

Al:

Ax:. AM : (V. :)1 (V ai I)

Ar:(. M : (V. () y
11.

-P N: (Eq") :

(V(V e)
MN :[N/x]y ''

',

tot

Al (Va

MN [N/4ly

At. 11*

Na 1-

Al:

N /1

T))

2.7 Basic generalized type assignment

As we noted in Section 2.5, the simplest forii of generalized type assignment assumes
that. any terin can be any argunient of aiiy type-valucd function. Tfhe system based on
this assumption is called basic geneyralized type assignment, abbreviated TAG.

The first step in defining this system is to define tlhe terms and the types. In this D.
case, the types will all be terms, so we begin with time terms. Because type functions
will take ammy termns ats arguments, it. turns out to b~e convenient niot to carry along in
t he notation thle type of each hound varialble.

Definiition 2.18 (TAG ternms) Thme terms of '1AG are defined from countably many
term variables xi, X2, ... , , ~,..., and somne terni constants, including a finite or infinite
sequence of constants 01, 02. as follows:
(a) every term variable and termi constant is a term;
(b) if M and] N are termns, then so is (MN); and
(c) if x is a terin variable andl A and M are terms, then (Ax.M) and (Vx :A)Al are ..
ternis.

With each constant, 0i is associated a non-negative integer (lg(O,) called its degree. Thle
conistants 0, are called type constants.

R~eduction for TIAG ternis will he dlefinedl as in D~efinition 1 .6; T[he only possible
contractions in a term of the form (Vx: : A) Al will be those which take place entirely

inside A and Al.
Now we can dlefinle the types and type functions. Viicli type function will have a rank e

(thre number of occuirrences of V) and a de~qrCe 2. 'l'11e type will be tire type functions of O

dlegree 0.

Definiitioni 2.19 (A tomaic typ~e finictiom) A terni a is saidI to be ati stomic type June-
tion of degrrc- it if and only if

a AI r0Al.M,..Alk,

where 0 is a type constant of degree k + it and Ali, At,), Mk are any termns.

Definiition. 2.20 (Prope(r TAG tyl)e! functions) '[le terim a is a proper- TAG type
function of rank in and deqrece i if and only if one of the following conditions is met:
(a) a is air atomic type fmnction of h'gre' ?I. aiid In= 0;
(b) ai = Ax./I, where /1 is a proper TM'A type function of rank it? and dlegree it - I (and 1*
where, of couirse, it > 0); P d

(c) a =_(V : /1)-y, where /I and -y are prope'r 'TAG type fuiict ions of degree 0, it 0,
aiLid rn =I + rmiik(d,) + raiik(-y).

'The 11 mi 'br if at-irguuitnts uedc I " is icse a 1's'. JI~ tie 's d Re I a t~ylx, cos's tallt is a spe' i~d
C,.sc'I f its, I.-Krsf all ati'sijsi ess11.wi, i.Which illiti il is a special srtss' (sf ithe' dI.gye's of a tyhp

(i' w '

%s~

75 %

4'6

V
.

. 0%

M ,I4 - ' ,.l* ' .JV.m

Deffitition 2.21 (TAG typ~e fimctioms) Th'le tern (v is a '1AG type funtison of rank
ni and degree it if and only if there is a proper TIAG type function /3 of rank in and
degree n such that a > /3. A TAG type is a TFAG type function of degree 0.

Thecorem 2.6 The degree and rank of a TAG type function are unique. Furthermlore,
TAG type functions have the following properties:
T1. If ae is a TAG type function of rank in and degree it and if /I is any term such that
a =./,then #3 is a TAG type function of rank in and degree n;
T2. If a is a TAG type function of rank in and degree it, then Axat is a TAG type-
function of rank in and degree n + 1, and conversely;

T3. If a is a TAG type function of rank in and degree n + I and if At is any term, then
avM is a TAG type function of rank in and degree ii; and

T4. (Vx : a)/3 is a TA G type function of rank in and degree 0 if and only if a and /3 are
TAG type functions of ranks j and k ryspectivcly and degree 0 and Pit + j + k.

*P roof See Hlind ley & Seldin [lIS86I Theorem 16.27 and Rlemark 16.28. U

Definitioni 2.22 (Thie type assigimient syStoml TAG) Thli system TFAG is a nat-
ural deduction system. IUs formulas have the formi

where M is a t.ermn aind ai is a lAG type. TAG has 110 axiomis. It., rules are (Vo C).
(Va i), (Eq") and ()
Remark It might seem unnecessary t~o postulate rule (l'X1

1) here,, since Ithe argumntt of%
Section 2.6 does not apply to this system. But. it is traditional to postuilate It, especiall%
since in the earliest versions (VY (t)# was only an abbreviation for Ga(Ax.3), and] rule
(Va c) had t~o be obtained from the following rule:

AlI: Ga/3 N i

M N : [IN.

To obtain our rulc (Vok t) from this rule requires rule (lq'); inded, to u.e thle elitni ti
tion rule giveni here in a nonitrivial way requires rule (Eq''). See II itdle-y &- Seldi n fIISS(3]
Section 16D)2,

Tlie- theory ofTIA(, is s, milar to1 the theory ofT' A (Sectlion 2.1). TIhere :ire sot ill C0t ii-
plicatiomis, but for the case we are considering here they are not serious. Vor examtple.
rules (Eq") and (=-',) complicate thle sttbj'c t-comstruction property, hit a version 4f the % 4'

p~rop~erty holds (see II indley k Seltlin [115861 lHemtiark 16.37). Then replareent letimm
(Leinuta1 2.1) needs somte modification, htit. a ver.sion of it can he proved thtat will work ..
withI t lie sit[)ject -redmmct-ioit theorem (Theiorem 2.1), which holds for fI-rehictioii. (II tel1- .

ley &- Seldin [11586] I,emmt 16:39 aud~ 'liteoremi 16.41). Theiz iormmalizat ai t heom,'ij for
d-dittioms (Theluoremt 2.2) also holdIs (II indiley X, Seliii [11586] lTheoremt W.AitC)

5d

%

% 001
-. % %W

In fact, 'TAG is not. much stronger than TA. It can be shown that if a term is assigned
a type by 'FAG, then it is assigned a type by TA, although 'FAG may assign more general
types. (See llindley & Seldin [11$86] Theorem 16.61.) And if all of the type constants
have degree 0, then TAG is equivalent to TA (ilindley & Seldin [11S86] Corollary 16.61.1).
These facts may appear to show tha. TAG is too weak to be interesting. Perhaps it is -
better to take them as showing that 'FAG is a kind of conservative extension of TA, and
thus that the basic formalism on which TAG is based is sound. This can give us some
confidence in extending 'TAG, as we now proceed to do in the next section.

0

J

~52 0S.X

.. ,. . ,. ,. . . . , : . :::.. .

2.8 Extended generalized type assignment

As we noted at the end of Section 2.1, there are two ways to generalize TAG: one is to
modify the definition of type to allow certain special types (such as the type N of natural
numbers) to serve as restricted domains for type functions, and the other is to use the •
machinery of type assignment itself to define the types. Since the second approach is
obviously more general, we shall adopt it here.

Thus, we now suppose that that there is a type of types, or a "universal" type,
which for now we shall call U. All the types in which we are interested will be in U.
The system we shall define here will be called "TAGIJ". The reasons we had for not,
supplying the type of a bound variable no longer apply, so we shall return to the more
familiar notation.

Definition 2.23 (TAGU ternis) The terms of TAGlJ arc defined from countably
many term variables Zi, z2 Xn, ... , and some term cons.ants, which include U, as
follows:
(a) every term variable and term constant is a term;

(b) if M and N are terms, then so is (MN); and

(c) if x is a term variable and A and Al are terms, then (Ax : A.M) and (Vx : A)M are
terms.

Reduction for TAGU terms will be defined using the /31-redexes of l)efinition 2.11.
The only possible contractions in a terin of the form (Vr : A)AM are those which take
place entirely inside A and M.

Definition 2.24 (The tyl assignnimit systvni TAGU) 'lh' system 'I'AGIJ is a
natural deduction system. Its formulas have the form

At : A 0

where M and A are terms. It has no axionis. Its rules are (Eq"), and the following:
Rules of type form arion:

(V Formation) Pa: A] (ndition: x does ,ot oc-

A :U I: U cur free, iii A or in any 0
(___ :___)/____ _ t (ischiarged ;tSllllll)|rioIn.

(Vji: A)I? U

(Eq'U) A: U A =. I?

1It U
5I:U

%

r,:l •

I ,%.*i(% -- -W'~-~V%~ , '~'

Rules of type assignment:

(V e) M: (Vx: A)B N:A

MN: [N/lxB •

(VUi) [z: A] Condition: x does not oc-
Al: B A:U cur free in A or in any

undischarged assumption.

Ax:A .Al :(Vt- A)1?

Rule (Eq'U) is a natural rule to go with rule (Eq) We can extend the proof of
Theorem 2.5 to virtually eliminate it from any deduction.

Theorem 2.7 Every deduction in 'AGU can be transformed into a deduction with the
same undischarged assumptions and conclusion in which each inference by either of
rules (Eq") and (Eq'U) occurs just above the major (left) premise for an inference by
rule (Eq'U) (in which case it is an inference by rule (Eq")) or just above the minor
(right) premise for an inference by rule (VUi) (in which case it is an inference by rule

(Eq'U)) or just above the conclusion.
3

Proof Note that each rule which discharges an assumption of the form z : A has a
premise of the form A : U which does not depend on the discharged assumption. Let us €
call the deduction of this latter premise the independent subdeduction of the rule and
the deduction of the other premise the dependent subdeduction. The proof is obtained
by transformations which move an inference by one of the equality rules from an inde-
pendent subdeduction of a rule to the dependent subdeduction of the same rule or else
to below the conclusion, from a dependent subdeduction to below the conclusion, from 0
just above a minor premise of (V e) to just above the major premise, or from just above
an iniference by (-') to below the conclusion. If an inference by rule (Eq") occurs just
above an inference by rule (Eq'U), thcn the transformations moving the latter inference
are applied before an attempt is made to move the former (since clearly, an inference
by rule (Eq") occurring just above an inference by rule (Eq'U) cannot be moved be-
low it. without invalidating it). The lat two kinds of transformations are II and III of 0
Theorem 2.5; in addition, we now need the following transformations:

3 Note that it is possible to have an inference by rule (Eq'U) followed immediately by an inference
by rule (Eq"), the conclusion of which is the conclusion of the deduction. In this case, the inference by
rile (,.r4'U , will be rg ,ded as occurring , ,st above the conclusion.

+'Em
4.

N. . 'S.
V. W~ 4.

IV.

(:A]

C: t

A:U /1:U
(V Formiation -1)

(Vx: A)11: U

to

x: A

1), 2D2(x)

(Vx C) :U (,(IU) (V F~ormsation 1)

(Vx: C)B: U

D3

V.

[x: A]

A:U B: U
(V Foriiistioi, I)

(Vx A)!?: U

,P~.

%'~h-

55S

to

x:A]

A:U C:U
(V lornatioti 1)

(Vx: A)C: U
(Eq'U)

(Vx A)!?: U

VI.

Ix: A]

V(X)S

M:C

M:IB A:U

(VU i I

Ax:A. M (Vj,: A)!)

V3

Ix: A]

721(x) V,

Al : C A :U
(VU i 1)

Ax tAl (Vr: A)C

*x: M (Vx: A) H

11 we try C~o remIove ani infrence by rule (1-aj'U) jIIsl. abo~ve the right, p~remlise of (VUi)

lk

. . % I

% rX

the best we can do is the transformation which takes

1

[x:A] 7)2

C: U
- (l'VU)

M:(B A:U
(VU i - l)

.\x:A. M: (Vx: A)B

D3 0

to
1

(Eq")

x:A •

M:B C:U

(VU i - 1)
Ax:C. M :(Vz : C)lJ (lEq")

Ax:C. M : (Vx : A)h1

Note that this transformation changes the type of the bound variable in the term to the
left of the colon, and therefore cannot be used with this theorem.

'this system is a part of the type theory of Martin-Li'f, and is, in fact, one of the
most important parts; see the references list(d under his an. At the same time, the
system has some weaknesses. For example, it is weaker than TAP: tile condition A : U
inl rule (VUi)prevents inferences corresponding to those by rule (Vi)in TAP because U U
does not hold. 4 There are several ways one might, extend this system. One might follow
Martin-l,6f himself by introducing more miverses. Tius, the type U would become UO.
id a new sequence of ,yl .s U,, U9, ..., U,,, ... (finitely or imifnitely many) would be
introduced with axioms such as Utz : UI1+1 ald rles such as the following:

A : U,,. .

Then in rules (V Formaat ion) and (VUi), U may be' replaced by any U,,. But this vs •em
is still weaker than TAP.

4In fact. ilig U: U tn 'lAM I ,make, l 1w .%V.te, , i ,, Ci l.; .ee [C,,II- S6a , .A.

57 •

577

S

Another way to extend TAG(II is to add two more rules: the formation rule

[x :U] Condition: x does not

A:U occur free in any undis-
(____:__U)A__ : charged assmuption.

(Vx :U)A :U

and the type assignment rule

[x: U] Condition: x does not

M: A occur free in any undis-
charged assumption.

Ax:U . M: (Vx : U)A.

This system is called TAGL in Ilindley & Seldin [11S86] §16E, since there U is called -

L. Furthermore, TAP can be interpreted in this system. Nevertheless, the system is still
not as strong as one might want, since one might wonder why not allow x : U , U as
the discharged assumption.

In Chapter 4, we shall consider the theory of constructions, introduced by Co-
quand [Coq85]. This turns out to he the best, available system of this kind. (See
Chapter 4 for further references.)

I

iiS

S-~w-N

.

0

Chapter 3

CONSTRUCTIVE LOGIC

A reader who has read this far is now in a position to understand the basic rules and the
inetatheory of the theory of constructions. However, there is an important aspect of the _
theory of constructions that we have not discussed; it has to do not with tht. onderlying
rules but rather with its intended interpretation. This interpretation is an important
part. of 4hc motivation Coquand had in creating thc system. Sone readers might find
it useful to consider this interpretation Iwforc proceeding to the theory of constructions
itself. For this reason, the theory of constrmctioms will be postponed to Chapter 4, and
in this chapter we will consider that interpretation.

The interpretation is what is usually known as the Curry-loward isomorphism, or 0 -
formulas-as-types idea. The essence of il, is that in systems of type assignment, types
can be thought of as formulas and ternis as proots or deductions. We will consider this
here for constructive logic, and it is with this that. we will begin (in the latter part of this
introduction). In Section 3.1, we take up a simple fragment of the propositional calculus
for constructive logic in which the only logical connective is D (if-then). In Section 3.2. •
we explaim tlhe essentials of the formulas-as-types idea. For some readers, this may be 0 I
e-nough, and these readers are invited to proceed to Chapter 4 after completinig S.ctioll
3.2. ,,,:N:-N

For readers who want more, we consider in Sections :1.3-3.4 the extension of tlh,,s
ideas to propositional calculhs with the additional connectives A (and), V (or). amd --
(miot). Again, many readers ua y wish to proceed to Chapter 4 after completiig Section 0

But for those wio want still imore, we consider in Sections 3.5-3.6 tIhe ext. sioi of
these ideas to predicate logic, boih first. order logic (Section 3.5) and higher order logic'
(Sectlion :3.6). 'I'hie syst.('Is TIAJ and rxiAl presented in thelse s1Cctimms Will seeln strr mge
to sone Ipeople, a1(l they are not. strictly nmecessary for using the theory of constructions.
but, they (10 give soue usefuil informationi about nuch of its motivation and itc'omlled 0
interpretation. V

I... s.,imple type them y.

59
r %

Let us now turn our attention to constructive logic. Most people who have heard
of constructive logic understand that it has something to do with existence proofs. But
in fact, the difference between classical and constructive logic involves more than that.
In classical logic we are only interested in whether or not a proposition is true. In
constructive logic we are interested in whether or not a proposition has a proof, and we _
do not want to assert its provability without having access to a proof.

This difference can be illustrated with formulas involving implication. A formula
A D B is classically false when A is true and B is false; it is true for all other combinations
of truth values for A and 1. Note that its truth value depends only on the truth values
of A and B; how these truth values are established is classically irrelevant.

In constructive logic, implication is not truth functional; the truth of A D B depends I
on much more than the truth values of A and B. In fact, instead of specifying when
A D B is true, we need to specify what it means to have a proof of A D B. The standard
constructive specification is as follows: a proof of A D B is a function [program] which,
given any proof of A as an argument. [input], produces a proof of B as a value [output].

Truth in classical logic (at least propositional logic) can be defined by means of truth
tables. In constructive logic, however, we really need to introduce a kind of calculus of S
proofs.

I S

0

%I

* S'"

3.1 The D-calculus

One way of defining a system of formal logic that seems especially suited to constructive
logic is to use a natural deduction systcm of the kind introduced by Ja.kowski [Jas34]
and Gentzen [Gen34] and studied extensively by Prawitz [Pra65] . We have seen the
method of writing rules used by Gentzen and lPrawitz in Section 2.1, but we have not
really discussed natural deduction systems as such. In a natural deduction system,
each logical constant is characterized by two rules, one for introducing it and one for
eliminating it. In the case of implication, these two rules are as follows:

(D e) A D 1 A (D i) [A] 0

A D B

Rule (D e) is also known as modus poncns, mid rule (D i) is sometimes called the
deduction theorem.

A formal calculus of propositional logic for the constructive theory of D can he
defined as follows:

Definition 3.1 (D-formulas) Assume that there are (finitely or countably many)
atomic formulas El, E2, E....... Then D-formulas, or formulas are defined as
follows:

(a) Every atomic formula is a formula;
(b) If A and B are formulas, then so is (A D 11). Unnecesmry parenl.heses will Ie .
omiitted. Furthermore,

Al D A..A,, II

will be regard.d as an ahbrviat.io for

A, D (A2 D (.(A,. D 11)..).JI
Definition 3.2 (Ti formal 'alculs NA(D)) The formal calculus NA(D) 2 is a nat.-
ural deduction svst..ni. Its formilas are D-formlas. It, has no axioms; its rules are (D
e) and (D i) givyln abor,.

Here are some exampl,: of dehduictions in NA(D), given in ale forn: 0

Exampl)h 3.1 i-NA()) A it .

Proof.

1. A Ilyp 1 -

2. A D A I (D e) N

i h Ue NA()) ,eII..I he impli,'ti,,n4 1 ragmil oI NA. IIere the "N" tai .r,,, ",auat, ,,.t , ,,,-.

I on" while "A" .sui ds for- "a 4, " . teis ii,. by (urry [Curf;3l to .t nd For c,'n trua iv. hogic
wih,,,, . u."gAti,,a. (('iry. who w,, ,shitfg "N" for ucali,,, cald the s ' vstem 'TA, Imit he.r. I hi -,,l %
I,, 1,,,fuis,. with "ty "' ;L.si) , lliml tl". I'h,. hlivi "N" w . u.wd iii 1hui, way 1,Y (;e tz,. 1(0-111,..) %i, ,

";I I .4f..,.

", ¢,.'C '. ,' , t ' '¢ . "/..' a2t T ro.t, , "*."".?.'.''?. ". .3" ,,/,, •'€ '" "* 0 '

N
Example 3.2 FNA(D) A D 11 D A

Proof.

1. A llyp I

2. BDA I (Di) 1

3. ADRDA 2 (Di)

Example 3.3 FNA(3) (A D I1 D C) D (A D I) D A D C

Proof.

1. AjDlDC ilyp 1

2. A D B Ilyp 2

3. A flyp) 3
4. BDC 1,3 (DC) 1,3

5. B 2,3 (De) 2,3

6. C 4,5 (De) 1,2,3

7. AD C 6 (Di) 1,2
8. (ADB) D A DC 7 (D i) 1

9. (ADBDC) D(ADI)DADC 8 (Di)

Example 3.4 A D B, B D C FNA A :) '

P roof.

1. A D B IlylI 1

2. B DC Ilyp 2
3. A Ilyp :
4. II 1,3 (De) 1,3

5). C 2,4 (D e) 1, 2,3

6. A D C 5 (Di) ,2,

i tree form, the examlphps are as follows:
Examaple 3.1'

[AI

[.11IV3 ' ' I ' S

! v)
H) A,1

A) II)

"¢- .'.' .

V .7
%

Examiple 3.3'

1 3 2 3

[AD BD DC] [A] [A Dil BI [] De

J3DC BDc

____ ____ ____ ___ ____ ____ (D)

A D CL

(A DD1) D A DC (i-2
(D '-1

(ADDB DC) D (A D 11) D A DC

Example 3.4'

IlpA D 11 [A]

H DC R? (De)

(D e)

(D i 1)
AD C 0

.A

63,

3.2 Formulas-as-types

If Definition 3.1 is compared with the remarks immediately before Definition 1.3 (in Sec-
tion 1.2), it will be observed that the D-formulas are isomorphic to the type symbols used
in defining the basic typed A-terms; each atomic formula E corresponds to an atomic
type O, and if A and B3 correspond to a and fl respectively, then A D B corresponds to
0 - /I. If)elinition 3.2 is compared with l)efinition 2.3, it should be clear that deduc-

tions in NA(D) are isoniorphic to deductions in TA. Now by tile subject-construction
theorem, the terms ini deductions in TA are isomorphic to the deductions. Hence, we
call think of TA a.s a calculus of deductions of NA(D), where the types represent the
formulas and the terns represent the deductions. If we make use of Definition 2.3, we *
can use basic typed A -terms to represent deductions in NA(D).

This correspondence between typed A-calculus and propositional logic was first no-
ticed by Curry in [CF58] Section 9E, and was later extended independently by a number
of people, including W. A. Howard [llow8O]. (For more references, see Hindley & Seldin
[liS86] Discussion 14.46.) The correspondence is usually called formulas-as-types iso-
i,,orphism or the Curry-Howard isornorphism. p

As we noted after l)efinition 2.3, a /3-reduction step for deductions in TA is similar .
to the D-reduction step of Prawitz [I'ra65]. fli fact, under the formulas-as-types isomor-
phisn, the two types of re(ictio, s.ps correspold exactly, the proof of Theorem 2.2
(i.e., tile proof of Theoreni 1.2) together with the isomorphismn proves Prawitz's result ,

for NA(D), namely that every deduction can be reduced to a normal form. Ilere, a
normal form means that nowhere in tlie deduction is the conclusion of anl inference by | 0
(D i) tile major (left) premise for all inference by (D e).

This isomorphisnm can also be used to show that. certain formulas are not provable
imI NA(D). Let. us consider as an exam ple the formdla known| as Peirce's law:

((A D /?) D A) D A.

It is not hard to se, that this formula is classically true, for it is only necessary to p 0
consider what. assignment of truth values could make it false. This would require an
assiiiti'it that makes A false and (A D B) D A true. Now if A is false and (A D B) -

D A is true, then A D B tmust also be false, bit, this is inpossible if A is false. Thus,
I'orice's law is always assignedIL tIme vai te true by a truth table. Nevertheless, it is not
construc tively valid.

' •
Tlivormi 3.1 Ihe forimmula sch/i , ((,, D /) D A) D A is not provable in N4(D).

Proof If Ihis formula were provatle, it would be the concluhsion of a normal deduction in -.
which every assUmtitiorm is (Iischargc,. Ily the formulas-as-types isomorphisin, it woul % %

follow that for any two types a and ii, there is a closed term Al in normal form such - ' .
I haili ot.r

tirn lY t li, subjct-coinstrmc ii t ln,,irmi, .1 imist have the form Ar.N for some t ernl ? ,

% 0

O.

i V

N for which FV(N) C {x}, and D must have the form .9"

[X: (a -.)--.a] _

N :U t
-.--* (1) "

Since it is sufficient to prove that there exist types a and d for which this is impossible, I 0
there is no loss of generality in assuming that a is atomic, and thus that there is no
inference by (, i) in the left branch of P 1. Since the only undischarged assumption
in D1 is x : (a -. 6) - a, it follows that this assumption occurs at the top of the left
branch of V 1 . Hence, Dl has the following form, where N is xP:

:(- -3) - a I

XP a%

Note that FV(P) g {z). Now consider the structure of V 2 : if the left branch had no in-
ference by (.i), then the left branch would begin with the assumption x :(a , 3) - a
and would end with P a c - A3 which is impossible since a is assumed to lbe atomic. It
follows that D2 has the following form, where P is Ay.Q:

D2. 4

x (~~~~~~ a 13 r, (-, ,

P 3

Q 3 'od

2) %,, ..,
.Vtl-r

AYQ /3 -

IHence, P3 is 3 ilorill dediiCtio, of

where FV(Q) C {x, y. Since we ani assue without loss of generality that /3 as well as
a is atomic, this is clearly iuhpossiblc. s

Corollary 3.1.1 If A and 11 ars ato.ic f ."nuit--, "

V A D) ((A D ,) D A) D A.

G5'

V %

-V'

%%.~ V

Coolay3.. [aad* a- zo~ll fo -u-i hn ,%

3.3 Adding A,V, and I (for

Let us now turn to the full propos.tional calculus. In addition to D (implication), we
need A (and), V (or), and -, (not). Ill constructive logic, -, is usually defined in terms
of - (absurdity), and we shall follow this practice here.

Definition 3.3 (Propositional foriulas) Assume that, as iii Definition 3.1, we have
finitely or countably many given atomic formulas E, Propositional formulas
are then defined as follows:

(a) a given atomic formula Ei is an (atomic) formula;

(b) 1 is an (atomic) formula; and

(c) if A and B are formulas, then so are (A D 13), (A A B), and (A V 13).

Notation Unnecessary parentheses will be omitted. The infixes A and V will have
smaller scope than D. The abbreviation

-A

will be used for
A DI.

The elimination and introduction rules postulated for A and V are as follows:

(Ae) A A B A A B1r

A, I?

(Ai) A I?

A A B1

(ve) [A] [Ii]

A v BI("(

C

(Vi) A H

AVIH, A V B

Of these rules, (Ve) will prohal)ly look least. familiar. It is easy to understald if we - .

think of proof by cases: if case A or cse 1 holds, and if C can be proved in each caxs,

Ihen (must be provable.

-

0 0

Si. 0

The elimination and introduction rules for negation, which are derived from those
for implication, are as follows:

(-e) I A (-i) [A]

-A

There is one additional rule used with negation: it is as follows:

(.l j) -LI

A

It expresses the fact that anything follows from a contradiction, a fact accepted by most
constructivists. (For those constructivists who do not accept this principle, there is the
minimal calculus, which is the system NJ without this rule. We will not bother with the
minimal calculus here.)

This leads us to the following definition: e

Definition 3.4 (The formal calculus NJ) The formal calculus NJ is a natural de-
duction system. Its formulas are the propositional formulas of Definition 3.3. It has no
axioms. Its rules are (D e), (D i), (Ae), (Ai), (Ve), (Vi), and (I j).

Remark Many people may be surprised that rule (,i) is constructively valid, since it is
often said that constructivists object to proof by contradiction. In fact, the form of proof
by contradiction to which constructivists object is not (-'i), but rather the following rule:

(I d) [-A]

This rule is not valid in NJ; in fact, if it. is added to NJ, the result is classical logic.

It turns otit that it. is possihl,, to modify)eliunition 3', somewhat:
P.~

Leiniiia 3.1 If rule (I j) is postulated in the form.

where E is one of the given atomw formulas. thc the rule holds in its full gcueralhty as . .
a dr'rived rule.

)
€" -'_ € .I.-,

%

670

Proof Since the case of the rule in which A is I is trivial, it. is sufficient to prove the f

rule for compound formulas A on thme assumptionm that. it holds1 for shorter formulas. The
three cases (note tlhat - is taken care of lby the case for D) are taken care of by the
following three deductions:

(D i V)
A D 11

G- (I) - (I j)
A B

A A 1)(Ai)

A

A~ V (Vi)

U S

Gs0

L

VS A

3.4 Extension of forxnulas-as-types

Ili order to extend the formulas-as-types isoinorphisi of Section 2 to NJ, it is most
natural to compare A, V, and L to x, +, and void. This leads us to consider the
system extended TA of the remark at the end of Section 2.1. But. this system does
not correspond exactly to NJ. Instead it. corresponds to a system, obtained from NJ by
replacing the rules (Ae), (Ai), (ye), and (Vi) by the following axiom schemes:

(1) ADBDAAB;

(2) AAI1DA;

(3) A A B D B;

(4) A D A V B;

(5) 1DAVB;
and

(6) AvBD (A DC)D(BDC)DC.

It should be clear that, in the presence of the rules (D e) and (D i), these six axiom '
schemes are equivalent to the indicated rules. 0

Note that by Lemina 3.1, rule (I1 j) is equivalent. t.o the scheme(7) -D k, l

where E is an atomic formula distinct from I. This schemie would appear not to
correspond to any term in extended TA, since such a teri, woull have to be assigned the P.

type void - 0 for an atomic type 0. If there is some object Al in the type 0, then we call
apply (i) with vacuous discharge of thc assumption x : void to obtaii the conclusion
Ax.M :void - 0. But. we cannot guarantee that there is an object At Co which 0 is
assigned for each atomic type 0; indeed, if there were such a tern for each atonmic IY w.
this would corres)ond to the provability of each atomic formula. So instead, we will add ,
to extended TA a constant 1,I for each atomic type 0 distinct from void, ail(] w-, will
assimi I Ie axiom5

(I j) 19: void - 0.

Sinuce it hs conist'ants I.# do not occur at. .he beginiiimmg of ally redexes, t hiy do not, itrleci

te normializatio result. llent. , these axiomis camnot h,, used to produce Closed l'rmms
ill ally of the 0. Furt ierirmore, by the proof of Lemmna 3. 1, it should I clear I Iat for
,:ch itypc ther, is a closed tern 10 of t.ype void - ,i,

It is not. dillicult to show that. 'l'horem :.1 and (Corollary 3.1.1 alppdy to N.I. 'Il,.
lori/;l.ionl th11orem I'Or ,'ix,,led TA plus Ile constants L and axioms (A, in) ';..l

be usIed I.o provi! thia.t NJ is, Himhed, dlitfereut from classical logic ill one ()f its 11(51 "

illlpOl'tallt aspec ,t.-,

Theorvmi 3.2 Far (it 1'wst ,,nc fi,,ii A .. *. .it

I/NJ A Vm1 -''

Proof Lt I h. ail alomic forniiil. I,ot. 'P 1w' a proof (i.e., a iI,4olicliom with 11) 1,,lis-,
harged ;lssm ltiols) wvhosvo (llI ,ll-ioll is A V -/I. ANl illstalli' it ,' in s14in, " .%

-00p .. -.," , - +

S S

A v -A D (A D A) D (-A D A) D A.

Using this, P), Examhple 3.1, and two inferences by (D e), we get a proof of

(-,A D A) D A,

Which is, when abbI reviations are removed,

((A DI) D A) D A.

Since both A and LI are atomic formulas, this is improvable by Corollary 3.1.1. 311 0

%

% IF%
* 0.

| . _lL
"I h' r',h,'li,,,+ro li+rll~di~tli,)lll, ,,hi,

+
lr++<l <'l<' fr N I, lfih i hme~l n e t~e5l. TA.h.

(J. .),i i,,llh, ,i~al ,,ri.'ita i,,, In,,,,',l r,
•

f+. N.I il n', ,f he, y. or h,+ s~n l~+ t-d5n*, ,'<
l',.,,i [I' +,. , (' ,Ll~ ,', X,'+, '

7o . .5

a). .. . + ++ +. I

3.5 First order quantifiers

It is standard in logic to proceed from propositionlial logic to first order logic. In first
order logic, universal and existential quantifiers are present, and are assumed to operate
over one fundamental domain of individuals; it is not possible to quantify over sets of
individuals or functions whose arguments and values are individuals.

To take an example from elementary arithlmitic, suppose that the fundamental do-
main is the set of natural numbers, and suppose that our language has terns representing
the natural numbers and also addition and inuktiplicatioti (which, for now, will le de-
noted by their usual notation in algebra). Suppose also that fornulas include equations
between expressions denoting numbers. Then a formula stating that z is an even number 0
is

(3y)(x = 2y),

where 2 is the term representing the nmber 2. A formula stating that J! < ! is

(3u)(,u = 0 A y =x + u),

where 0 represents the number 0. (lRecall that ini the set of natural numbers, there are
no negative numbers, so that if a number is different from 0 it is positive.) A formula
which says that z divides evenly into y is

(3u)(,ii = 0 A = x).

Finally, a formula which says that 0 is anl identity for addit.ioii is

(vZ)(3: = z + 0).

In giving these examples, I assumed thal. there is a ICrmi represeltig each naluralmr
number. in fact, such terms are easy to construct.: begin with an individual constiflu 0
and a funcion symbol ff with one arguinenti. 'l'ln the term n representilng the nalura _
number i is

,,-ff(ff(... (ffo). ..,

where there are it occurreiccs of ff.
If we analyze the structure of the fornllm ill th(" exalmples, %', se' that We have

an indiuidual constant 0, individual variables .. y' u. functio sybliols if of one
argument and + aid • (mnultiplicatioi) of two argulIcl.s a pfrcdicalt. syibol = 4 two •
argulnment.s, the logical connecl. ives of propositional logic, ad tOle un v,,rsal and ,xitv.,'il--

tial quantifiers. This heads us to the following formal defillition:

Definition 3.5 (First order term and frlnila) Assilme tihal w have cohil:thh -

many individual variables r, y, z, xi, etc., linitely or cotinaly manaly ndirdtu l ' ,,i,- %

stants e1 , e,. fititely or comiitably mally fJnlio sbllls Wj w ... alld firillh. or
coulil.ably liany predicale syuibols I. where each fllliol sy)biIlOh ;ald prli-
cate symlbl has associauted witih il. a ia.llral umliber calle' its d1 re . which ,l-,.lll
its Illilber of arguime t.s. Theii'lue i rms arel d(lined as follows:

71 Ia* %

%

(a) individual constants and individtal variables are terms; and
(b) if w is a function symbol of degree m, and if/! .i.t . i,, are terms, then w(tl . tin)
is a terxm.
First order formulas are now defined as follows:
(c) if o is a predicate symbol of degree li and if I, ... I, I are terms, then P(ii I ... I til)

is an atomic formula;

(d) -L is an ateoiic formula;
(e) if A and 11 are formulas, then so are (A A B), (A V B), and (A D B); and
(f) if A is a formula and z an individual variable, tihen (Vx)A and (3x)A are formulas.
IParentheses will be omitted as usual. An occurrence of an individual variable is said to
be bound if it is within the scope of a universal or existential quantifier; otherwise it is
freT.

Notes (1) Both function symbols and predicate symbols may have degree 0. A function
symbol of degree 0 is just alt individual constant; individual constants are listed sepa-
rately because it is customary to do so. A predicate symbol of degree 0 is an atonic
formula. One example of such an atomic formula is 1.

(2) Here -L is, in effect, taken to be a predicate symbol of degree 0. But this is not
necessary in all first order systems. For example, in first order arithmetic, I is often
defined to be tie atomic formula 0 = 0, which is 0 = 1. What is important is that -L
be an a(omi formula.

Definition 3.6 (The formal calculus NJ*) The formal calculus NJ is a natural de-
tuction systemn. Its formulas are the first order formulas of Definition :.5. It has no
axioms, Its rules are ite rules of NJ and, it addition, the following: ON 04

(Vt) (Va) A(x) Condition: I is a termn.

A(M)

(Vi) A(xr) (ondilton: j- does not.
occur free it, any undis-

(Va)A() charged assumption.

[A(y)] Conddioi: 1 does .tiot oc-
(3)A (.x) (, ur fret in C or i,, any

undischarged assu timlttiom.

(li) A(I) (ondition: Iis a t.t'rmm. S

(Ax) A(J')

72 4" W%I

W W irx ~lvV'.X~FlJ N-11 XR 1MYK v'VTc lT".V -J' '.n W .pCin PI IVV9U1W r

'L'hc condlition on the variable z in rtile (Vi) guarantees that no assuflhItiofl is made
about x above the inference. Rule (3e) formualizes the(argu menlt: there is an z such that
il(z); let y be a thing such that A(y); conclusion C (where y does not occur free inl
C). See the discussion after Definition 2.17. The condition onl y is obviously necessary
for this rule. Variables such as x in (Vi) and j/ in (3e) are called cigenipariabkes or0
characteristic variables.

At first glance it might appear that the nuatural way to extend the formulas-as-types
isomnorphism to NJ* is to use the systeunt TAP. But. this will not work. For in TAP, only
types (corresponding to formulas) call be siibstituted for the (type) variables, whierea~s
in NJ* we mnst be able to substitute terms for the qiuantified variables. Instead, we
will need to take a type to rep~resent (lie(fundameuntal (loinain of quantification, and 6
introduce quantification over that type. We will ;also juced to modify the definition of
type to correspond to D~efinition 31.5.

Thus, suppose one of the atomic types is J, the type of ind~ividuals. For each atomic
constant e, we will want to assumne

c : J.

For each function symibol w of dlegree tit, we will wat, to assuile N%

j -. J J,

where there are ink + I occurrences of J. Thein it. wvill follow for each closed terin I that

/ J. 0

Fuirthuerniore, if I is a terni with free variables _~,..x, flthen it will follow that

XI:J_. ., ":JIi I :J.

N ext., we nee d to geiie rau i ze th e Idi iii t on of at omi c typie: for each Iindic ate s% il bol 0
of degree tik, and for aiiy teriis I...... we lieI that ,I ~ i is a tvpe. We also

fussiiie void is ani at.oiiic type, aiidl foriii as tisiia! types it x /1, (V +I 0, and tv 3. Also.
We neeCd thai, if x is a variab~le and (i a is a type, tlien (W~ i)a and (3]j : J)n are types.

It. remaius to specify the(teris ill (Va: J)mu and (EIa J)av. For the type (V : J)o .

we Want. aI filictholi wich, wheii applied t.o any objec. I of type J, prodiuces a Value inl
[/o Note -tat, as iii TMA the type of this function depeiiuds onl it.s argnieitw amid niot

Jiist oiu tue type oh' it.s argumviii. For (3xi : Jl~v, we want. it) have pairs (1, Al) such t hat r
I has type J and At has type T/xo.'hose are juist. the kiiid of pairs %ve were .iualo
t) represent. I. tm11 e typeW strutiu , tres of' Sect ioin 1. Wie sh a hiavei i luorie co say a bout t hIs1_

lime aboye.' lvelols '' hmg slate ;t il ' hatitm *.iiilos -. 1 heoI
(a;iiieii ibV (isilig tihe ;Ilarhiiimery iiF A or TAG~(. W~hat is niece'ssary is somoi type to) wiici
Ilii above' types Il'lolig, such as tIii' t.N1 s' U 4f Si-1ii wn 2.8. Since theif akoyc typo., rep-

roseint propositims, this new type, will lbe caleil Prop. We have' Ill- tf dbmwig fi iiu11al

73t

~%

FA V

Definiition 3.7 (TAJ itypes) Th'le types of t1he systcin 'lAJ are defined as follows:

(a) J and Prop are (atoiinic) types; and

(b) if a and 11 are types, then so is ((Y - J3). 'Tle special types J" and Prop" for 71 > 0
are dlefinled as follows (by induction onn)

J,= , jr1+ _ --4';
Prop' = Prop, Prop"~+' =- J Prop".

Deffinitioni 3.8 (TAJ termis) TIhe terms of IAJ are dlefined froii countably many termn

variables XI, X2, . - n., . and the terin coistants el , e... . W1, W2 , -. P V2 -.

void, D, D.,, fst, snd, inl, inr, case, proj.,, and, .1, a~s follows:

(a) every term variable and termn constant. is a term;,

(h) if M, N, A, and B are terms, so are (AlIN),(A x U), (A + B), and (A -B); and

(c) if x is a ternm variable and A and AM are terins, then (A\x:A . AM), (AxJi . M), (Vx : i)A,
and (3x : i)A are terms. With each constant wi andl vi is associatedl a natural niumber
dg(wi) or dg(,), called the degree of the constant in qnestionl.

Definiitioni 3.9 (Reduictioni for TAJ termis) 1Redtion for TIAJ terms is defined by
the following tab~le of redexes and coiitradta:

Iledex Contractir

Wi) (Axi : Ai.AI)N [/.A
(fst) fstA H(DAUAI1N) At
(snd) sndA/I(DAUAI N) N

*(casei) case A 1(inIlAI~)('IG FM!
(caseq) case Ali(inrA BMA)CI"G (;AJ

(proqj) proj.,A(Z(D.,AA1N) ZAIN

Definition 3. 10 (Th~e typ-~ nss"'iginnt systenm TAJ) T[Ie syste'iii 'PAJ is a natu- ~
ral deducetion system. Its fornmulas are all expressions of the form

At! A,

where A! Is a ternm and A is eithior a feorm or a type. T1hie axtooms are as Follows: ~.

(4,) Uc , in= g1,

(,:i PjProp"', mi = (g((P,),
-, for each i and~

(void) void :Prop
l'I 1w .1Ics of I'A.l rolie ini two groups:

5% M.

Rules of type fornation:

(x Formation) A Prop B Prop

A x B: Prop

(+ Formation) A Prop B : Prop

A - B: Prop

(-- Formation) A Prop B: Prop ,

A -- B: Prop

(VJFormation) [: J] Condition: x does not

A :Prop occur free in any undis-
charged assumption.

(Va : J)A : Prop

(3JFormation) [; : Condition: x does not
A ' Prop occur free in any undis-

charged assumption.
(3x : J)A : Prop

Rules of type assignment: %,.r

(x e), M" A x1 A :Prop B: Prop

fstABA : A

(x 02 Al:A x B A :ProplB:Prop S

sndABMA : .. ,. ,1.

(xi) t: A N: !) A: Prop 1: Prop .-. 3

DABAIN A x 11

%|•

-% . . Iq

S<" i

,,/ "X. O

=7 :XX3 3-

,2 ",, .. G..)
-f: .'.' '20

P 0

(+ e

M:A+1 Ax:A.N:C P:C A:Prop B:Prop C:Prop •

caseABM((Ax:A. N)(Ay:B . P): C

Condition: x and y do not
occur free in M,A,1B,C, or
in any undischarged assump-
tion; x does not occur free in 0

P, and y does not occur free
in N.

(+i)1 M: A A:Prop B:Prop

inlAIM : A + B

(+i)2 N:B A:Prop B:Prop 0
inrABN : A + B'-.,

(-.e) : A-,1 N: A Condition: A and B are
N : 3)both terms or both types. 1 , -

(-. ix 1 : A] Condition: x does not oc-
M 11 A Prop cur free in A, B, or in any .-. ,..'undischarged assumption, ,.

A.:A. Al : A B a,,d A is a term. -%.

(---. i)' : A] Condition: x does not oc- ,__

Al :H cur free in A, B, or in any
_ _ _undischarged assumption,

A':A Al: A- 11 and A and B are types.

(_L ji) IForeachi, •]
NI, J N.) J N... ,, "J Condition: n = dg(pi).

I ,NN... N.. void -iN 1 N .. N,,,

(Vi,) AlI (Vxr J) A N J1

MN [N/j']A

% %
p -p A, -

- ¢&-~-. ,-&..'4f

W,0
X-AAO

71-1 w - I .

I 0

* S

(VJi) I] Condition: x does not
M: A o-cur free iii any undis-

charged assumption.

Az:J . M : (Vx : J)A

x: : A) x: J]

M: (3r: J)A N:C A : Prop C :Prop ,

projj(Ax:J. A)C(Ax:J. Ay:A. N)AI: C -

Condition: x and y do not
occur free in C, M, or
in any undischarged assump-
tioins, and y does not occur

free in A.

(3Ji) [x :J Condition: x does not

M: J N :[Ml/]A A : Prop occur free in Al or N
or in aniy undischarged

Dj{Ax:J. A)MIN : (3x J)A asslitioil l

(-) Al : A Condition: N is obtained

from A! by chaiiges ofN : A lholllld Variahhl.s.

(M') Al : A Condition: I is obtained
from A by changes of
lxtitid variales.

Notes (1) As we have seen, we have iii '[A. fIitictiotis the type of whose valujes do .pewl
on the arguments as wll as the types of Ithe argiuments, and we also have pairs in which
the type of tihe second element. de peIls on the first, elem,et as w ll as on its t p, '[his
means that the type struct ures of Se'ctii, 1. 1 are tiot n,,de(ls of 'I'AJ (.ju,,st :s t,,,.y ar-

not models of TAP). It is possible to construct, a kind of semanitics for TAJ as follows: J

is ilnterlpreted as the set of all closed ler,,s of N.J'; Prop is iterpreted as the set of closed
formiulas of NJ'; the function types builtl up fromi J and Prop using are interpreted

using ternis and formulas in which free variables occur; and torms assigned as types

terms in Prop are int.erp~reted as ded lct.ioiis or, if they art, closed, as proof.. Any olier

model for TAJ is likely to be too complicat.ed to provide most, ipeole willi any ins-ight.d

(2) The)resence of Ax:J . A in the, comthisiou of rules (J1e) anl (]Ji) iy iv . ar,,,m a '.

bit. straiige. It, is there ,,erely to sumipply A as ;it rgum'iiet, and I h,'refor, it might sevim l. ., ,

'I ",r
77 ""''

I %

-, ~.N,. 7.

more appropriate to use simply A. But if we (did that, then x would occur free in the
conclusion whenever it occrs free in A, which is contrary to tile spirit of the system. ,.'
The only obvious alternative is to postulate Dj,A and Projj,A for each formula A, but
in this case whether or not a tern Dj,A is defined depends on whether or not there

is a deduction whose conclusion is A : Prop, and this is also contrary to the spirit of
the system. The (proj) contraction of l)elinition 3.9 shows that it makes no difference
whether A or Az:J . A is used as an argument here, since it disappears in the contraction.

The systei., "AJ contains the system NJ* in an important sense, for we can easily
write A, V, D, and I instead of x, +, , and void (provided, of course, that the
constant I of TAJ is renanied). The system NJ* has been given here as a separate I S
system because it is traditional to do so. lowever, from here on, systems of logic will
only be presented with the systents of type assignment with which they are associated
by the formulas-as-types isoniorphisni.

. 0

% %

A.

. 0
'!r5m

t-• J.*J ./'d-

3.6 The full theory of types

Ani examination of TAJ raises a question: why (piantify only over tlhe type J? Why not
quantify over other types, such as Prop? In fact., why not quantify over all of the TAJ
types of Definition 3.7? There is, in fact, no reason at all for not quantifying over all 0
TAJ types, and a logic based on this idea was proposed as long ago as 1940 by Church
[Chu4O]. A version of this system will tow be presented as a system of type assignment. .

Clearly the main difference between TAJ and the system that. will he defined here
is that instead of only (Vx : J) and (3x : J), we will now have (VW. : a) and (3x : o) for" -.-)', : ,
every TAJ type a. It should be clear how to obtain the iaore general quantifier rtls t , .

required here from those of TAJ.
However, there is another important difference: one of the TAJ types is Prop, and ,

since we can quantify over Prop, we can interpret TAP in this new system. This means
that we can use the definitions of Section 2.4 to reduce the nmnber of primitives.

The new system will be called TAT. oil

The types of TAT will be those of TAJ (Definition 3.7). .d

Definition 3.11 (TAT terms) The tcns of TAT are defined from countably
many term varialbes x, r 2 ,... x,. .., and the term constants 2,W. , W2.

, 2, ., as follows:

(a) every term variable and terin constant is a term;

(b) if M and N, are terms, so are (MN) and (Al -- N); and

(c) if x is a term variable, A and M are terms, and n is a type, then (Arz:A . A!).
(Ax:ly. M), and (Vr : A) are terms. \Vith each comst.awt w, and P, is associated a natu- -

ral number dg(wi) or dg(Vi), called the degirc of the const~a|t iin questiom. 01-'.

R"ductioi for TAT terms is defined using tie /1-redexes of I)efinit.iot 3.9. %

Definition 3.12 (The tyj)e assiglmimet syst,i TAT) The systvei, TAT is a ,,atti-
ral deduction svstem. Its formulas are all expressions of tle foirm %

.- MA : A, ,

where Al is a term and A is either a term or a type. The' aLiorts are (ti), (w,), ani'd At\7.
'i) from Definition 3. 10 for each i. Tlhe rules of Ilupt forma ltii ar,. (- Formi;at itt) ,f

(V, lormat.ion) [x: o(, ICo dition: J, d,,s to .

A rp occur frt'. ill am~t milis *
A :. P__h___. liarll assum ll It . :tllI *,i _

(Vr" : t)i : Prop 0 is a lyl,,'

;. *-.. . S* ,5S '[~~llr 1,11i.s ol typc assrqunrmcu art), (e r), (11 , ra < '01 o ~f I f),'Iiot l :1.1 tIl 1d * N
79

ev

for each type a,

(Vae) M:(Vx: a)A N :t

MN: [n/x]A

.,,. .,w

(Vi) [x :a C] Condition: x does not .' , .

M: A occur free in any undis-
charged assumption.

Ax:a . M : (Vx a)A

Remark As in TAJ, the type structures of Section 1.1 are not models of TAT. There

are models of the original (classical) version of Church's type theory formed by inter-
preting J as any set, Prop as the set of two truth values, true and false, and interpreting
compound types a -- /3 as the set of all functions from the set corresponding to a to the
set corresponding to fl. But these models are not models of TAT because they do not .,
model the deductions. Furthermore, since TAP can be interpreted in TAT, it follows 0
that TAT has no set theoretic models. It is probably best to adopt the procedure we % !%.

used for TAJ, and interpret Prop as the set of closed formulas. Because we now have % N_
quantifiers over all types, this idea is hard to make precise, and so is unlikely to be
accepted as the basis for any kind of theory of models. Nevertheless, the idea probably
gives most people more insight into TAT than any other notion of semantics.

Now let us show how to use the definitions of Section 2.4 to define the other terms and
operators of TAJ. Some changes in the previous definitions will be necessary: wherever
we previously had a quantifier (Va), we will now need a quantifier (Vx : Prop), and where R'se
we previously used the abstraction Aa, we will now need Au : Prop. Furthermore, the
existential quantifier will need somewhat different treatment, since we now expect the ,.
elements assigned an existential type will be pairs. In addition, it, is now possible to
quantify over the parameters that stood for type schemes in TAP and now stand for
terms of type Prop. For this reason, it, is worth stating these definitions again for this %:,4,s
svstem.

Definition 3.13 (Cartesian pro uctt proposition) The product type operator and ,

it, associated pairing and projection operators are defined as follows:

(a) X Au:Prop. Av:Prop (Vu, : Prop)((u - v- u,) - v);

(b) D Aw:Prop . Av:Prop . Ax:u . Ay:v . Au):Prop . Az:u - v - w . z-t ; "..

(c) fst = Au:Prop . Ar:Prop . Ax:Xuv . xu(Ay:u . :m' . y); an('

(I) snd - Aw:Prop . Av:Prop . Ax:Xutv . xv(Ay:u . Az:v . z).
We ii:,e A x 11 as an abbreviation for XA

It is not at all difficult to prove froin these defilnitions that if A Prop and B Prop

D ..I 1? .1 11- z x IH ,, ",' ,.

-5'- "

,,; 1 -

0

%

fstA: A x H- A, ,

and
sndAl: A x I - 11.

I urthermore, it is easy to see that if M : A and N :13, then

fstAJI(DAIIAIN) =. M

and
sndAII(DABM N) . .

Definition 3.14 (Disjoint union type) The disjoint union operator and its associ-
ated injection and case operators are defined as follows:

(a) 0 Au:Prop Av:Prop (Vw : Prop)((u -, w) -- ((v ,- w) -+ w));

(b) inl Au:Prop Av:Prop . Ax:u Aw: : Prop. A./:u - w. Ag:v - w .fz;

(c) inr E Au:Prop. Av:Prop. Ay:v. Aw:Prop . Af:u -, w. Ag:v - w. gy; and
(d) case -A u:Prop . Av:Prop . Az:Ouv . Aw:Prop . Af:u w. Ag:v -. w . zwf g.
We use A + B as an abbreviation for eAB. B.

It is easy to show that if A : Prop and 11 : Prop, thcn

inlA? : A - A + 11,

inrAII :B - A + B, 0

and ,
caseA13 : A + 11 -- (Vw : Prop)((A - u) -- ((B -. n,) - v)). €,

Furthermore, it is easy to show that if C : Prop, Al : A, N : 1, F : A C, and %
G : B - C, then

case A B(inl A/i)CI"; .I 0

case A B(inrAIt)(I"G . N..

Definition 3.15 (void type) void - (Vx: Prop)x.,,.,

Dvfiuition 3.16 (Existent ial quantifier) If , is a tvp, I is a tern, aild if, for a vari- 0
able x' which does not occur frev iii l tbul, may occur free ini B, we have " : ti F- B: Prop,
thlie the existential Iailt ifier over oi and its associateid pairing miid projection funictions
are lefined as follows:

(a) (3 . : v) -- (Vi : Prop)((Vi- : (k)(11- - iv) - w);

(b) D,,,f E Ar:o . A!i/:/? .Aw:Prop . Az:(V .o)(1? -) . z.ry; antd

(c) proj,,, - Awtu:Prop Az:(Vx :y)(/ -- t,) . At:(V.r :,)/l .ywz. -1 N

•% . %

- ." p,

-.'.,..'2

-0

% '

t % -= % ., -
i- .', ':'..e,'.'',.:.'gt..V,,; 'J; : ,-.,: :,:,... .', . ",'..".',*."..-"."."_,,.. v ".".'' ,¢,"," " "

It not hard to show that rules (3F'ormation), (3ae) and (3ai) corresponding to the
rules for 3. in Definition 3.10 are satisfied. It is also easy to show that

proj,CZ(D,MN) =. ZMN.

Note that in Definition 3.16, there is no way to avoid the use of the parameters; for
types are completely distinct from terms, and there may be a free variable in B which
is bound in the definitions.

Remark It is worth comparing proj,,,{ with project# of)efinition 2.17. For the same
reason that the latter could not be made a true projection function, the former cannot 0
be used to define a true right projection for use with rule (3ae). There is no problem
with the left projection: take C = (x and take Z = Ax:a. Ay:B . z, and observe that
this satisfies the condition on rule (3ae), which becomes in this case that x and y do
not occur free in C or in D,,,pMN and y does not occur free in B. On the other hand,
for the right projection, we need to take Z = Ax:a . Ay:B. B, and this requires C = B,
in which x may occur free. Being able to use a right projection with rule (3ae) would 0
correspond to allowing an inference in NJ* from (3x)A(z) to A(iA) for some term tA,
and making inferences like this work for natural deduction formulations of first order or
higher order logic is notoriously difficult.

N
S -2

0

Chapter 4

THE THEORY OF
CONSTRUCTIONS

We have now seen quit(a few systems of type assignment to A-terms. As we said in
the introduction, these systems are important for us because they are the basis for the
system which really inLerests us, the thcory of constructions. This is an extension of
TAGU and TAT introduced by Coquand [Coq85] and studied further in [C1186], [CII],
[Coq86a], [Coq86b], and [Coq]. We have already seen that TAT is an extension of TAP;
the theory of constructions, as an extension of TAI', is also an extension of TAP. It is also

an extension of the important part of the type thzmorp introduced by Martin-Lbf (Mar75],
[Mar82], and [Mar84]'. This chapter will be devoted to the theory of constructions.

The proofs in this chapter will be given in more detail than in previous chapters.
This is because the system is new and sonme of the proofs are difficult. In fact, Martin-
L6f [Mar71] 2 presented a proof of normalizatiom for a system which was later shown
not to be nornializall :'. For this reason, the illportalit proofs in this chapter need lo
he ciiccked carefuhy, and so they will be ires, *it 4 ,d in considerable detail.

0

.1

;e,- also [r ,1: ld XI. L
. m ly ve .i of [1- i-751. ..

S-.' ,iC-Sil.
% K

I 0

WN.

S

4.1 The theory of constructions: natural deduction
formulation.

The theory of constructions, or TAC, combines the kind of generalized type assignment
of systems such as TAG and TAGIU with the formula-s as types isomorphism used in
defining TAT.

As we remarked at the end of Section 2.8, one of the weaknesses we want to eliminate
in this system is the fact that in TAGU we cannot quantify over compound types built
up from Prop. For this reason, as in TAT, we need a notion of type. But unlike TAP, we
cannot define the types as a fixed set of terms. Instead, we need to indicate the types
by the rules of the system. Thus, in addition to formulas of the form M : A, we need 0
formulas of the form

A : Type

The types are then specified by the deductive rules of the system.

Definition 4.1 (TAC terms) The terms of TAC are the terms of TAGU (Defini-
tion 2.23), where U is denoted by Prop, except that there is a new constant, Type.

The original intention was that Type would not he part of any compound type.
However, it has since turned out that it. is convenient to have Type occurring as a
certain part of certain compound types, as we shall see below.

Definition 4.2 (The type assignment system TAG) The system TAC is a natural ,
deduction system. Its formulas are of the form

where Al and A are terms. There is one axioll):

(PT) Prop: Type.

lhe rules are' as follows: 0
,. ".\

Rules of type formation:

(PPJ"ornaliom) C: A] (ondzlhi, x does not. or-
.4 Prop i? : Prop cur free iMI A or in any

1 ineisc harged assun iption., ;, p..

(V1 A)I- : Prop

(TPFo,',nation) [j-: A] (o,titZoI. 3 (hoes not, (5- .-

A : Type I? : Prop cur free in A or in any
1_uhi.chiarged ;Issumnptioii.

%"
% /(Vri)!? Prop

, t. V 2 '.

%. % .

%1 %

-68 I J

- " -

(PTForuztion) [: A] Condhon: x does not. oc-

A Prop lI: Type cur free in A or in auy
undischarged assumption.

(Vx : A)! ? Type

(TTFormation) [x: A1l Condition: x does not. or-

A : Type II : Type cur free in A or hi any
undischarged assumption.

(Vx : A)B: Type

(Eq'P) A Prop A . I

B : Prop

(Eq'T) A: Type A =. 11

11 : Type

Rules of lypc assignm,,ent:

(Ye) M : (V- : A)IB N:A

MIN : [N/ri!?

(VPi) [x: A] Condition: r does not o-
cur free in A or in any,,ndischarge,, a ,mlmtio,,. ' kM: Ii A : Propd1 SlnIti.

Ax:A M : (Vx : A)B 0

(VTi) : A] Condition: x does not. oc-
Mt 1 A : Type cur free m A or in anv

Aiidisclharged assillml.ioln

Ax1 At (V.- A)!? 0

(Eq") A:A A /I

A : It

(~)At A (nndulu,: A' is. obtiined
N I from i Al by chniges of

A' A (vIrijli's.

(Note that several rules fisted earlier are listed Ier' iii full: silee this vslyi. is lw(,

• .

% 5 5

%-- .|

Frup~~ SLSMX p

main subject of this work, it was fell, to be important to make this definition relatively

self-contained.)

It is possible to state the rules of this system in a more compact form. To do this,
we define the kinds to be the two terms Prop and Type. Then if we let t and f' be any
two kinds, the rules of type formation can be stated as follows:

(K'Formation) Ix : A] Condition: x does not oc-

A II: cur free in A or in any
undischarged assumption.

(V2 : A)I : "

(Eq'n) A : A =, I

H :

Furthermore, the rules for (VaY i) can he combined as follows:
* S

(VMi) : A]

A::A .A : (Vx : A)H

* 0

A -

,= of , r

... . .

4.2 The basic metatheory of the theory of construc-
tions

Theorem 2.7 can be extended to 'rAC:

Theorem 4.1 Every deduction in TAC can be transformed into a deduction with th,
same undischarged assumptions and conclusion in which each inference by any of the
rules (Eq") and (Eq'x) occurs just above the major (left) premise for an inference by '. %

(Ve) (in which case it is an inference by rule (1,q")) or just above the minor (right)
premise for an inference by (VKi) (in which case it is an inference by rule (Eq'K)) or
just above the conclusion.4

Proof Similar to the proof of Theorem 2.7. The defii.ions of independent subdeduction
and dependent subdeduction will be obtained from those of the proof of Theorem 2.7
with U replaced by any kind tz. In addition to transformations I and Ill from the proof of
Theorem 2.5, we need the following transformations (corresponding to transformations
IV-VI of the proof of Theorem 2.7):
VII.

A:K BK
%

C : q' ,P20:, 1 k'

(,tt'lForn ation I)
(vx : A)l :.

x A

C, 1zt

~i~'lor mi om a)
(VXr ,-.

%(Vr: A)11 R-' -

'P3

ipiferem, 4~,,m, lo ride (F,4.) Andl Cite IlexI i .I3 ,('.,,l" hS; 9-14

% X

87'

VillV
Ixr:A]

A 1 ,'

(ioiK'Forinatiori 1)

(vx A)B sz:

to

[x: A]I

(iKKdFormatioii 1)

(Vx A)Ci

P3

A] K

A1r x: VS)1

Al :(.~ -P

_________ -

Al:Il A:,

(Vg I

|, •

to1

Ix: A]

V () P2"

M:C A:K
(V,,i -I) ,

Az:A. M: (Vz : A)C -A

Ax:A. M: (Vx : A)B

V3

From now on, we shall assume without further comment that the transformation
given by Theorem 4.1 has been carried out in any deduction. In some cases, when de- I
ductions are put together, inferences by equality rules will be indicated at places other . -
than those specified by the theorem; this will mean the deduction obtained from the one
shown by carrying out the transformation given by Theorem 4.1. 4 A.

TAC is clearly an extension of the system TAGU, i.e., of the system 'rAGL of Hindile
& Seldin [11S861 Section 16E. This means that TAP can be interpreted in it.
Theorem 4.2 TAP can be interpreted in TAC.

Proof See Hfindley & Seldin [I1S86] Theorem 16.66. ,

ANow let us turn to the general theory of TAC. The first result. we have is that
Type and Prop control terms which can occur as "types" the way we expect then) to.
To see this, we need first to consider the conditions under which assumptions nim be
discharged. For each rule that discharges an assumption of the form 7 : A, there is the
independent subdeduction, the conclusion of which is either A : Prop or A :Type. 'fijis
fact and the conditions on the occurrences of the variables of discharged assumptions
imply that assumptions must be dischargel in a certain order. Thus, inte.ad of sets of]
assumptions, we are really interested in sequences of assumptions. Now suppose 1hat ." -,Fi,. -W
we are given a sequence of assumptions of the form

x, : A,, X2 : A2 : A .?k e

Suppose that the assumption that we wish to discharge is always the last, of the sequence.
Under what conditions can the last assumption be discharged? And more generally,
under what conditions is it always possible to discharge the last assumption of any
initial segment of this sequence? It is not difficult to see that the conditions are those %
of the following definition: .

8) I 0 %

."_%' ,'..

Definition 4.3 ((Well-formed) environmiients) A (well-formed) environment is a
sequence of assumptions

x : A,, j,, : A2 .. ,, A. (4.1)

such that, for i = 1,2,..., n - 1, the following two properties hold:
(a) xi does not occur free in At, A2 ..., A, (but may occur free in) Ai+,...., A.); and
(b) either

x I A 1,x, A.,, ,i :Ai I-'TAC Aj+I : Prop

or
.r: AIX-., :A 2 , . . . : Ai FTAC Aj+I :Type.

We can now see that the terms which can be proved to be in Type are really quite
limited.

Theorem 4.3 If
I' FTAC A : Type, 0 S

for any set of assumptions 1', then for some n > 0 and for some terms A,, A2 , ... , A,
and for a sequence of paiwise distinct variables x,, . n,

A =. (Vx 1 : AI)(Vx2 : 12)... (VX,, : An)Prop.

Proof This followA iminediat.lv from the (hct that any formula of the form A : Type can ' '
occur only as the avioin (P T) or ;I, the conclusion of one of the rules (KT Formation)
or (Eq'T). In .,

Definition 4.4 (Context) A ronhext is a terin A satisfying the conclusion of Theo- r (-.

rein 4.3. If A is a context, and if the coniclusion of Theorem 4.3 is that A is convertible
to 2

(Vi-n: ,At)(Vj-:, : A,.2)... (V.x,, : An)Prop, (4.2) ," ,'

then 4.2 is called a standard form of A, n is callhd the index of the standard formn, and %
A,, A,, . .I4,, are cal led its PIefix /YIqps.

It is easy to see (by the (hrch-IR.ossr theorem) that two standard forms can be
standard forms of th. saie' context. If* and only if they have the same index and cor- * S
responding prefix types are convertible. This means that we can speak of the index of
a con te t, and If we are willing to consider equivalence classes of convertible terms, we -. .

can speak of the prcfix types of a c(poni-. It. is also ea-sy to see that any context can be
reduc ed to onel of its standard Forms.

Contexts have a clear intaning: ea' Ii.context. is the type of propositional finctions

ofa certain, nunnmIer of arguments over , 'rlain ters as "types". Obviously, contexts are -.-r;
really useful only wl,#,, the prelix types are eil her in Prop or in Type. I"or this reason, %
we woulh like t- know which colit.,.xls ,'an Ie ,hown (perhaps usilug assumptio s) t.o I. -

II lype. ,.c., w,. ,:it a. g,'ne',,l ,, ; ilh partial o,,nverse to 'Theoreim 4.3.

% *

900 N
JR0

P_ , UN N N

,'..? :.'

Defiinitioni 4.5 (Well-formned contcxt) A coittext is said to he wel-fonned if and
only if it has a standard form (4.2) such that the corresponding sequence of assumptions
(4.1) is a well-formed environment.

It is easy to show the following result:

Theorem 4.4 If A is a well-formed context, then

"TA C- A : Prop.'

We would like to show that a context cannot. be assigned a type other than Type. 'To
do this, ,we need to consider places that Type calu occur iii a deduction. It may appear
that it occurs only on the right of the colon and then only alone. But this is not the
case, for consider the following example:

Prop: Type Prop: Type
(VT-v

Ax:Prop. Prop : (Vx : Prop)Type •

What we can prove about occurrences of Type requires a definition: %

Definition 4.6 (Supercontcxt) A terin A is a supercontext if

A =. (Vl : A,) ... (Vr, : A,)Type I

where (Vxj : A,) ... (Vxn : An)Prop is a well-fornied context. ilere, (Vx A])... (Vx, :
An)Type is called a standard form of A, n is called the indez of the standard form, and
A,, A2, ... , An are called its prefix types.

'lhe remarks after l)efini tion 4.4 about. the st;udard foirms of contexts apply equally 5

to those of supercontexts.

'F'lhe result w,' want, is now as follows:

Tlheorerm 4.5 (a) If I' is a wcll-formed cnmviromnicnt and if

I' t A t: At

thien Al reduces to a teri titivh tlm re is no S occurrence(of Type. :%

(Ih) If I' is a wcll-fo-niied environinent and if

I' .AI, i A A,"

and if there is an occurerenc of type in truery Ierin to which I reduce.s. then .,I i a

supecreon text.(,

"It is, ill i'm-t, ca,y to streig.i hell T ' . , 41". h iIh.w 11it if .I.A(C A Type lhii A is it well fr,,,.ed

9,-, '_ 0 ",

A,

,.- z.

Proof (a) By iinductioni on the deduction of

I' 'rAC At A.

(Note that the type of each variable in a well-formned environment satisfies the conditions
of the lemmna.) In the cases for rules (Eq'tK), the conclusion follows via thc Church-Rosser
theorem anl(the fact that no redl uction can introduce an occurrence of Type into a term.
Thle remaining cases are easy.

(b) Bly ndtuc tion on the ded uction of

I" l"iTAC M :A.

The only difficult. case is rule (ye); in this case, s~uppose that the inference is

M: (x: B)C N : B

Aff N [N/x]C

If I here is an occurrence of Type in every term to which [N/zIG red uces, then by (a)
thtere, is an occu trrence of Type in every term to which N reduces and hience also in everyA
termi to which C reduces. Hence, there is an occurrence of T ,)e in every term to which
(Vx :I3)C~ redutces. Thus, by the induction hypothesis (on the left p~remlise), (Vx :B)C

% -%~is a suiIpercon text. It follows that C and hence also [N/zIG are also su percon texts. M

D~efine ait occurrence of a suilteruii A of a term M to be the(type of a bound variabbe

if AF is the id icated pa~rt of a subterin of the(forin Ax: A . N or (Vx A) B.

Theormi 4.6 Let I' be a well-flormed environmecnt, and suppose

I' FTAC At A,

whc'rc A is not a supeyreoitext. TI hen Al = N for somec term N in which every occurlrnce
of the atomic trmi Prop is inside the type of a boun~d variable.'

Proof By induiction on the deduction of I"F M:r~ A A. u

Corollary 4.15.1 If F is a well-formed environment, and if

I' F'rA(- Al : A,

whi(rc .4 is 1not aI supercoutcyt, Mctn At is not (I context.

' Sif,:s iti s mo, in gener'at liItt, wttii r lt tii'siocr sc rTp 1 'vi* ot agi s siis-c l, ,- idablsf-y alsiss r tor no there towiij,tss a ot-ur nc (i Typini: ve r o -e -, 11~
ltsv ,,f exel,,nteI inidtcle. t-nst in ft,-st, all SIl a s r.,atlv n,'t,*' forI part (ht) is that i. is IIiA (,sI t o

*lI ,,I, ii I I .dloto I tIs II IN' '-;U I I)5 f.~ii llo)Is II~ Isil,, iI, a Ysln Il~h Tp I~~ w1.

7 s ohl i f Il. ls sit i tal A is IlsI a sj''ss , mo i t ssr-t-is.vs vh' tal. tlsaes
ill I list I, I-alvi 11-'s's~ foot Ill. thssssressii iti Cat i , I,(1-1ssilsle too ,s-as f-sssI is i ls i t'lls in seIl-6i 1

%is

%- %

".7 .5'- "

ADV-A195 37- NATNESIS: THE NATHENARTICAL FONDATION OF ULYSSESMU 2/2
ODYSSEYR EERC ASOIATES IN THACA NY J SELDIN

UN:I D NOY 0? RDbCS-T-97f-223O122 H

11.0

*1 . Me-

0 S

X '2 A

Corollary 4.6.2 If r is a well-formed environment, and if

I' FTAC M : K and r FT'AC Al : K',

then Pe =- K'. 0

Proof Otherwise, we have r FTAC A : Prop and I' I-TAC M Type, from which we
get by Theorem 4.3 that M is a context and from Corollary 4.6.1 that it is not a context.

It is not hard to generalize Theorem 4.3 to the following: 0

Theorem 4.7 If TA A:
rF- -TAC A : B ,

where B is a supercontext, then

A =. Axt:A1 . \X2: : A2 ... \.Axm: : A,. • A', (4.3) 0

wher A' is a context.

Definition 4.7 (Context Function) A term A satisfying the conclusion of Theo-
rem 4.7 is called a context function. If A' is a standard form, then the form on the
right of 4.3 is called a standard form of A, and its index is nt plus the index of A'. All
of the remarks and conventions regarding standard forms and indices of contexts apply
to those of context functions.

Now let us consider the subject-reduction theorem (Theorein 2.1) . In order to
prove it, we need a replacement. theorem corresponding to Lemma 2.1. Lemma 2.1 is
stated in terms of the subject-construction theorem, which is much more complicated 0
to state for TAC than it is for TA, but the part of the lemma corresponding to the
subject-construction theorem is not needed for tile subject-reduction theorem. Another
complication arises from the fact that changes in a term to which a type is assigned may
be reflected later in a deduction in the types themselves. However, in the case of the
replacement lemma needed for the subject-reduction theorem, a tern is replaced by a
convertible term, so by rule (Eq"), the later types need not be changed. (See Ilindley &
Seldin [1IS86] Lemmna 16.39.) It is suflicient t.o have tile following result (which is called 0

a theorem because it is more substantial tham Lemma 2.1):

P Theoremi 4.8 (Relaceimnt) Let I'1 be anty well-formed environmnent, and lct D be
a deduction of

I', 'rA(A : A.

Let V : C be any statement tn P, let D, be that part of) endinq in V : C, let D.,
be the rest of D, and let x1 : , ... J!" : B,, be the assumptions of 1)1 that %
are discharged in 'P.. Let IV be a termin ti'h that IV =. V and h'V(li') C FV(V). and

93 0

N

I ,

N

I S

suppose that F2 is a well-formed environment in which z, x,., Z do not occur free.
Suppose that 13 is a deduction of

[r2, X : Bi : B. ITAC W :C.

Then replacingD V by V 3 in D results in a deduction V 4 of

r', '1 F-TAC M-: A,

wheie AI* is obtained from M by replacing appropriate occurrences of V by W.,

Proof By induction on the structure of V2 .

Basis: There are two cases.

Case 1. D2 consists of the single statement V : C. Then M is V, M* is W, and V4

is just V:J.

Case 2. D2 consists only of the axiom (P T). Then the replacement is vacuous,
W - V = Prop, and VD4 consists only of the axiom (P T). i 0

Induction step: We have the following cases depending on the last inference in V,.

Case I. The last inference of V 2 is (nnz' Formation).Then A is n', M is (Vx B)E,
and 7) is

[I1

D5 V)6(X)
B: : tz E•:

1nzForaioi1

(Vx :MBE : n,,"s,' ;

where the occurrence of V : C is either in V5 or in 1 (z). By the idiiction hypothesis,
the replacement of D1 by V 3 in D5 and 7 6(x) leads to (leductions V 7 and Vs(x) of,
respectively,

[I , 1'2 1-TAC 1 * It. :-K%.

anid
I'l, 1'2, x : 11 'I'TA - * : K'

It. is diflicul to describe exactly the replaceinetits which are required t.o obtain At * from M, bit. it,
is p)ossible to read the replhicement p'rocess fromi the proof. It is worth noting that the palt of V 4 whicl ,

is II11,t i ded in D 3 lls exactlytle salle ilife-rence rules ill tihe Sallie relative positions as P-2 exct ,

,',halps for sm itiferen..es by (Eqi'), (E1'"), or (=).

..- 1 %

'.

t % %

4"i l. *"
l

S

for appropriate 1* and E*. Since V . V, IV 11, and so D4 is as follows:

P)7 [: II]

(Eq'tz) °Ds(:) Y

B: It,' : ' '

(,:K'Formation - 1)
(Vx : B)l'* P,d. '..if

•_

Case 2. The last inference of 1) is hy (Eq'x). Thenret A is x and 2) is

vs

At: K, 0

where N Al. By the induction hylpot~hesis, the rephtcemen,! of'D, by V3 in 2)5 leads
to a deduction P\ of%

Il, 1'2 F-TIA(' N':

for all appropriate N*. Since * =. N =. A l, we can take M* A M, and then P 4 is

obtained from "D, by an inferenice by ('q'j.
Case 3. The last i,,ference of'P is by (Ve). 'lhii Al is A4, AI.,, A is [Ali/x]A', and P ., q

is

Al : (Vx : i),4' Ai : I
(v, ,,) 0

A4, Al., : [At.,/1 .],,'. (V.w

By the ilI(IlctionI hypotll'sis, the replaceimen,it ol"Di by ": in P, and 'A; heads to deduc-
t.ions P7 an(d '),, 4

m1) , 1'.. TIA : Al* : (Vx : II)A '

l, ' S ',' AI. :I H..,., ,1'], 1"2 .A.,,t.,*
for appropriate .'1,* and ll.T. l",,rlh rimiore, At. =. Al.,. Ih'ice, /'1.1 is

P7.

All* (Vx : H)A' Al.* : B
((v,) %- : , ,

Al l#, : [A..,I]A' (l':,") (. ,-.)

V- % -i"iAltW [At. -I jb/A'

95 0

',, %.
*1'. *6.

JQ

* 0

Case 4. The last inference of V is by (Vtei). Then A is (Vx H) E, M is Ax :13 N,
and ") is

:1)

7)(i) 7),; B]a

Ax:B . N (v: ,B)E.

By the induction hypothesis, the replacement of 1), by 93 ill P 5(x) and P6 leads to I
deductions PV7 (x) and Pg of ,

r , r2 I, X : AB : N : E

and l,1 'A(l:

for appropriate N* and B, where IP* =B . ''hen P4 is as follows:

[x:3] B*

N" It :K. , .-

Ax:: B. N* : (Vx: Ii)E. V')i)

(ast 5. 'le' !ast inferenc, of 7) is by (Eq"). Then T) is

Af IS

A/: A,

where A =. 11. By the i h Ii ioI hy oth)()he'sis, the repla rc nent. of "D Iby "D:, ill P") leads
1,o a de(ltion P,; of

for appropriate A/*, and P., is ol,aLivled by adding an infrerence by (I,") at, the end. .1..,.?

(' s' 6. "I'lle last infereuice in f) is 1)y (_-:). Then "P is

V A

A/,. •]

")"~6 N_ l

1,!.

where Al is obtained froin N by changes of lbound varialvh(s. ly the induction hypothesis,
the replacement of D by D 3 ill 5 leads to a ded uction/ D of

1, r, I-TAC N A

for appropriate N*. Since FV(W) 9 FV(V), the changes of bound variables which oc-
cur in passing from N to M will take N ° to the desired M*, and so P 4 can be obtained
from "D6 by adding anl itiference by(=) 2

We can use this theorem to prove the subject-reduction theorem the same way that

Lemma 16.39 of Ilindh+y & Seldin [11S86] is used to prove Theorem 16.41:

Theorem 4.9 (Subject-reduction theorem) Let ' be a well-fortned environment.

If
11 F'rAc M A

and M > N, thcn
I' F'rc N: A. •

(See also the proof of llinlley & Seldin [1IS86] Theorem 15.17). -- A

As in llindley & Seldin [!1S86] §161)2, the subject-reduction theorem is related to
the normalization theorem. In particular, it tells us the result of performing a rediiction
step on a valid deduction is anotlher valid deduction. The reduction steps that interest ,
us are the following:

K reductions. A deduction of the form

At It

A

A : : (Vx : A)II (V i I) P3
(I':<l" "P:, . .42', 4 1

Ajr:A l: (Vx : C)1? N : C
(V+ ,,),' " -&- .

(Ax:,I AI)N IN/]rl?

.'., . ,' ,

% %

97 S

.- '+ . . 4 ,,, ',, m

* 0

reduces to
V3

N : A (Eq")

N: A

DI(N)
[l]: [N/IJ

where V4' is obtained from V 4 by replacing appropriate occurrences of (Ax:a . M)N by

[N/z]M according to Theorem 4.8.
Here, the formula Ax:a . M : (Va- : C)B the cut formula of the reduction step. A

reduction is a (possibly empty) sequence of replacements using these reduction steps.

A special case of a r. reduction step is a conter, -reduction step or c-reduction step in]

which B is a context or a supercontext. A context-reduction or c-reduction is a reduction

in which each reduction step is a c-reduction step. A deduction will be said to be context-

normal, or c-normal if it contains no cut formulas for c-reduction steps. It turns out to

be easy to prove that every deduction can be reduced to a c-normal deduction using the

notion of the degree of a term, and that this partial normalization result is important in

proving the full normalization theorem.

Definition 4.8 (Degre of a terni) Let. A be a term such that there is a step M : A

in a deduction in TAC. Then the degrce of A relative to the deduction is defined as

follows:

(a) if A is not a context or a supercontext, tien the degree of A is 0;

(b) the degrees of Prop and Type are I;

(c) the degree of (Vx" : A)1? is one ,tiore tha, the maximium of tile degrees of A and I;

and

(d) if A =. B. then the degree of A is equal to the degree of 1.

Since only contexts and supercontexts have nonzero degrees, the definition of a context

is enough to guarantee that. the degree of a terni relative to a deduction is well defined,

Remark Since it is not possibh, to dehcide mechanically for a given termn whether or not

it is a context or a supercontext, it. ,may appear that this definlition uses the law of the

excluded middle, which is invalid in const.ructive logic, to define the degree of a term. . 6

But this is not really the case; for in calculating the degree of a given context or super- %

context, it is only necessary to calculate the degree of terms A which are either Prop

or Type or for which there is a step in the deduction of the forim A : Type or A : Prop.

and then the degree of A call be determinied by which of these situations occurs. (It. is

impossihle to have nore than oil,, by Theorems 4.3, 4.4, 4.5 and 4.6, and it. is possible

to do.ernmmijie ieclhanically which oncirs.)

%U

Note that the degree of a term relative to a deduction is invariant of f-conversion.

Theorem 4.10 Every deduction in TAG with conclusion M : A can be reduced to a c-
normal deduction with the same undischarged assumptions and with conclusion N : A,
where M > N. •

Proof Let the degree of a cut formula be the degree of its type with respect to the
deduction. Note that if a cut formula is removed by a reduction step, the degree of
another cut formula which had lower degree before the reduction step and which occurs
in the deduction after the reduction is unchanged. Let the index of a deduction be the
pair (d, n), where d is the maximum degree of any cut formula in the deduction and n 0
is the number of cut formulas in the deduction with degree d. If the pairs are ordered
as in the proof of Theorem 1.2, and ii reduction steps are carried out in the same order
(the cut formula has degree d, and there is no cut formula with degree d in 3), then
an argument like that of the proof of Theorem 1.2 shows that every deduction can be
reduced to a deduction with no cut formulas. It should be clear from the nature of the
reduction steps that a reduction ,;hanges only the term to the left of the colon in any- -
formula by carrying out a sequence of contractions. "

Definition 4.9 The term N of Theorem 4.10 will be called a c-normal form of M.

In terms of this definition, Theorem 4.10 says that every term to which a type is
assigned by TAC has a c-normal form.

This partial normalization result is important for the full normalization theorem
because it gives us some useful information about terms A for which it is possible to
prove r FTAC A : Prop. To obtain this information, we need the following lemmas:

Lemma 4.1 Let D be a c-normal deduction of

I' FTAC A : Prop,

where r is a well-formed environment. Then either A = (Vx : B)G for some terms 13
and C and some variable r which does not occur free in r, or A =. XM1 M2 .. p
for some variable x, some natural number p (which may be 0), and some terms
AfI,M 2 ,...., M,, and furthcrnore, it can be decided constructively which of these at-
ternatives holds.

Proof Consider the last inference in V which is not by (Eq"), (Eq'P), or (-). This
inference cannot be by (Vizi) since the type of the conclusion is an atomic constant, so
the only remaining possible rules are (nP Formation) and (Ve). Which of these rules
actually occurs can be decided constructively (by inspection of the deduction).

If the inference is by (KP Formation), then there are terms B and C and a variable -*

x which does not occur free in r such that A =. (Vs : B)C.
If the inference is by (Ve), then consider the left branch of the deduction. As we travel

tip that branch from the bottom, the only inferences we find are by (Ve), (Eq"), (-),

99 _ SU

and perhaps (Eq'P) at, the very bottom. This means that the formula at the top of the
left branch nitist be an unlischarged assumption, and it must therefore be in 1'. It follows
that this statement must have the form z : i, where B =. (Vx : C) ... (Vz : C,)Prop
for some natural number p (which may be 0). Then we must have A =. xMl ... Alp for
some terms Al..., Alp,. U

Definition 4.10 (Simple an(I compotind deductions) If VP is a deduction as in
Lemma 4.1, then it will be called compound if the first case of the lemma holds and
siniple if the secoml case holds. If A is a terin such that A : Prop is the conclusion of
such a deduction P, th.t A will be simple [compound] if) is simple [compound].

Lemma 4.2 If there is a deduction of

1' FT ^C A : Prop,

then there is a c-nornfal dcduction of it.

Proof Let. V be the given deduction. By Theorem 4.10 there is a c-normal deduction
of

1' T-,rAC : Prop,

where A C> R. By adding one inference by (11(q'P) at the end, we get the desired c-normal
deduction of I' .A Pop. SI' -TA(A : Prop.

By Leimmna .2 anId)elinition 4.10, every type in Prop (with respect to a given
well-formed environnent) is either simple or compound, and it. is possible to decide
constructively which it. is. "urthermuore, the compound types are formed by repeated

ist" of the operation V froni the simple types and Prop. Note that the contexts are
for ned in, more or h ss the sai 1ne w ay.

L e m m m ia 4 .3 I f 'f) i s a d , , , , , ,,o n (i f

I' . (V r : /1)11 : Prop,

itihi, x does not oc ,'ir ficc in I or in A and where I' is a well-form ed enviroim en t,
then there is a ded'ction P' of

I', ' A F 'A H : Prop.
Fititbrinore. th.e c-nirial deucin to whiclh 'D reduces has fewer inferences by rules
other than , ") (l'n'c), and () than fh c-normal deduction to which P reduces.

Ir~r i- T*V

,
d,.. J*rl -

l' ,,t, rlifs F,!l,ws tf,,, I.,'i,,, .. 1 ~I nl 1.2. U
.% .; ,'

v',,. "1

,%'. bP%

JAV *11*

Theoremt 4.11 If W

' 'I'A A A,

where r is a well-formed enviroynent and A is not a supercontert, thrn

I' FTrAiC 1: Type
olr

' I-TAC A Prop.

Proof By induction on the length of the deduction 1) with the conclusion Al A.
The only difficult case is that in which the last inference of 7) is by rid' (Ve). 'Ilien

M = PN, A = [N/x]C, and 7 has the forin

'Pt 72

P: (Vx: B)C N: B

(V, e) *
PN :[n/x](.

By the induction hypothesis,

I 'r T C (v x :) (' : K

and __•
I' FTAC B .15

If we have n- Type, then 4.1 must be the conc'lusion of either (tz"TFormation). Ihe,,

premises being 4.5 a,,d.
Ya : I1 F'AC C : Type.

'I he concluisio, then follows placing D., over 'm'h oc.cirrence of the assunpt.ioii x : B. •
If z - Prop, we use- Lemma 4.3 to carry out a similar argument using one of Ihe rules W-% %" .

rules (KP Formation). a

Lernias 4.1 and 4.2 give us a structure omi the types in Prop. ft. is interesting" to note.
that the other types havc exactly the same struc tu re. ly 'l'heoremi 4.11, every type is
in Prop, in Type, or is a suliercont.cxt.. It. is clear froin the definition th1t. supercoillexs . 0
have this structuire, and Theorem -1.3 t.ell.s ,s Ch.t the samne is true for c¢ntex i.s. Wh a.t
all of this means is that types are built. iIp from Type, Prop, and thIe siiipe types hy IO we
operation forming (Vx : A)]?.

Theorems 4.3, 4.4 and 4.11 and Corollary -1.6. 1 allow us to classify all Irmul;%s which
ran he deduced from well-foried etlviroitnits:

Definition 4.11 (Classificati,,n of ,rintilas) A for,,ida A/ A is called:

(a) a context function if A is a stlperconll.t; "i,,

(b) a context if A Type;

Ii" N

(c) a proposition function. if A is a context;%

(d) a proposition if A =. Prop; and
(e) a proof if A is neither a context nor a su)ercon text.
A deduction whose undischarged assumptions form a well-formed environment is classi-
fied according t~o its last formulasm.

This classification shows the connection between TAC and the formulas-as-types%
isonuorph kmn.

We would like to extend this classification to the terms Al (at least relative to a
givcn well-formned environment). In other words, we modify Definition 4.11 as follows:

Dofinitioii 4.12 (Classificationi of ternis) A term M is called:
(a) a r-contezi function if there is a supercontext A such that r '-TAC M : A;
(b) a I'-coniezi if r f TAC Al : Type;
(c) a r-proposition function if there is a context A such that 1' IFTAC M : A;
(d) a l'-proposiion if F' l-,AC M : Prop; and
(e) a I'-proof if there is a term A which is neither a context nor a supercontext such that

I' FTAC Mt : 'I.

We have already proved (Corollary 4.6.1) that no term is both a F-context function

the proof that. this a classification is exclusive, we need the following result.

Tlheoreni 4.12 If I' is a wvell-formird environment, and if

I' T'AC At! : A and I' I'rTAC. M' :1B,

are both derivale, where A4 and AV' differ only by changes of bound variables, then.
A 1. B.

Pro&of By had w tAi)II on) the lengths of thie two deductions, VI and V2 respectively. W

('asr 1. 'I' last. inference in V, is by (I'X"). Assume that. the left p~remnise is Al A'.
B%. fthe had actionl hapotliesis, A' =. lin Bt. A =. A', and so A =. B.

C.ase 2. 'IlIv last. Inaferenacc III P., is by (Eq"). Syminetric to Case 1.

Case 3. 'I ast inference in amither P, naor 1)2 is b)y (Eq'').
.Stbcase 3 I consists of the axiom. 'lhen Ml is Prop and A is Type. 'I'hie either

D,~ is also thme axiom, in which case H is Type andl we are finished, or else the last,
inferomace in . is by ruh'le q~) Ini which case ,Kis Type b~y Corollary 4.6.1.

Sti bcasr 31.2. 'I'1a' last, inaferenace of D), is by (,jc'l~ormnation). Th'len 1) is t,' by
Corollarv 1 I6 2.

Sabts(,.~ 3.1. 'lie, last. iniferemace of V1, is by (Eq('i) . '[hlea by Corollary 4.6i.2, 11 is a ..

.',aithrusr 1.4. lIitlst, infi'remace o 1 is by (V~v e). 'Il'he the last. inference ol 1)oP
it heIlir (Vo e)or (FIq'.). If it. is (F hK.), t lhen thme dlmoremi follows by C oroll~ary 1l.6.2 -

1012*

V~

*

0

Otherwise, M is N P, Al' is N'P' (wherw N' and 1" dilrer fromt N and 1' o(ly by changes .
in bound variables, A is [Pl/n]A', 1 is [I/Plr', P, is

N (V~r: C)A' P C
(V a e) .e,

NJ' [P/zlA', -.

and "P2 is
.F.A

N :(V.r D) ' I: ()

(Vr(e
NJ' : [P//z]l'.

By the induction hypothesis, C =. 1) and (Vx : C)1' =. (Vxr D)I)'. if follows that
A' = *B', and hence A =. B.

Subcase 3.5. The Ist inference in ' 1 1 is by (VIZi). Then the last. inference, in "P., is
by (Vici), M is Az:C. N, M' is Ax:C. N' where N and N' (liffer by chanliges in bound , ,
variables, A is (Vr : C)A', and 11 is (Vr : (')/l. ('lhere is no loss fgan,'ralit.y ill iiss11il.g

that the indicated boundl variable is x ill both Al aid Al' hecauise if 1.i. b ound varialls
are different a ,ior modificatmi of P., will ,,ake i h,,, I Ile sam,e.) Fitrt hermore, P, is

A x : (' N :(V x r (1 .1 ,'
,(V IZ, '% i

;Md "P,, is" .,- -

0

F A:" .N' Wx P

N: IA' (" • , .''' , .

(Va i I) "- a S,,p,,"

'UA:(. N:(Vi: (')IA' '-".-

,.: '..-::

By lthe indul~ctIin hiyplthsis, Ai' Ii', ;,lid it. 'l,'arly llws ha:at .1 . II.

C,,,,.,,,, ,,,4 ,.1.,,/ ,e aa eH-a aai f..-.iaa plI ,'lp a1 li

, ..z .
1.-

.
%-A.~

N
I 0

Proof Suppose At is both a |'-proposition function and a I'-proof. [iten there is a
U-proposition tB and a I'-context, C such that

I' T'AC At B and r' TAC M :C.

II lice,
•"

I' FTAC 1) : Prop and I' FT;AC C : Type.

By the theorem, 1U C. Hence, by the Church-Rosser Theorem, there is a term D to...'
which both 11 and C reduce which can 1,e proved on the lha.sis of ' to be in both Prop .. , t .
and Type, contradicting Corollary 1.6.2. . • S

Tlheorem 4.10 gives us the following characterization of I-proposition functions:

Theorem 4.13 (I) f r is a well-formed environment, and if A is a F-proposition func-
lion which is not a proposition, then either each c-normal form of A has the form
Ax:B : C, in which case the type assigned to A by F converts to (Vx : BI)F, where F is
a context, or each c-normal fomn of A has the form zMI ... M,,.]

Proof By hypothesis, there is a c-norinal deduction of

r1" T'AC 1): (Vxc : B)I',

where A > 1), which is a c-normal form of it, and 13 is a context. Except for (Eq") %
and (= 0), which make iio difference, the last inference in this c-normal deduction must .
be (Vri) or (Vo e). If it is (Vni), we are done. If it is (Va e), then proceed up the
lft branch to the first formula which is not. the conclusion of an inference by (-- e) or
(Vo e). Since t he ded uction is c-normial and since r is a context, this formula is not the "
co'llnsion of a i Inference by (Vizi). IHence, it. is an assumption, and 1) has the form ,
.111 . .. Al,,, as (esired. ('hat all c-iormal forms of A are of the same kind follows by

thli ('liiirch-Ho(sser 'Ilheorvin.) N

By iterating th, theorem, and, if necessary, replacing terms Al by Ayi:/?,. Aly.,,
where y, is not free in Al, we can prove the following corollary:

Corollary 4.13.1 Ut nder thc hypothcscs of the theorem, if

I' tTAC /I : (Vi-.I : I?) (Vx,, : B)Prop, •

1,,,, cithcr A --. Ar,: U Ajr,,: 1,, .V, wiere' A' is a F-context, or clse cier, c-
noo, ,,l forni of A has the form .ir 1 ... Al,,.

Retuark It is worth pointing out, that, as we have formulated ''AC, there is nothing to , .
,'xchile making ;nu assunption of Ile forii r : A, where A is a superontext. Woe have I
w, coiisid,'red such assimptions so f'Ar, and the early forniilaions of rA(' excluded .
fihi.n If I h-v do no harm, since lI, rules of the systen prevent the discharge of , .
.,tl\ 1ujCh assumialin lturl ,'r,,ire, IH y will huurn nut to h, ius'fuil in practice, siric*.

It)I .1

% .

P~~e.S F- r.~ .- *

undiscl-arged variables may be thought of as new constants added to the system. But if
such assumptions are allowed, then it is no longer true that anything that can be proved
to be in Type is a context in the sense of Definition 4.4; it might convert instead to

(Vz :)...(Vx, : Ajx? ... B,n. , S

If we allow such ternis to be contexts in a generalized sense, then different assumnp-
tions can result in the same formula having different classifications according to Def-
inition 4.11. For example, let F, be x :Type and let [2 be x :Prop; then y : x is a
P1-proposition and a F2-proof. Furthermore, the definition of well-formed environment ko

(Definition 4.3) would have to be modified to allow any of the Ai to be a supercontext.
(Definition 4.5, of a well-formed context, would then have to differ from Definition 4.3,
since none of the Ai of a standard form of a well-formed context can convert to a su-
percontext.) In Definition 4.8, it is necessary to specify that the rank of xB ... Bm is
1 if x : (Vzi : A,)... (VZm : Am)Type is assumed in the deduction. In connection with
Definition 4.10, a term of the form zBt ... B,,,, where x : (Vx1 : A)... (Vx, : A,)Type
assumed in the deduction, will be called a simple generalized context. Finally, it is
important to specify that no substitutions be made for variables assumed to be in su- -

percontexts; they must behave like constants. In what follows, we shall assume that
these modifications have been made.

%

0

'..,...::.,;:

"N ~, ,,ir= .'%~

105

I., J .V ,V
_ I

4.3 The strong normalization theorem.

It might appear that to prove the normalization theorem it is sufficient to combine Theo-
rem 4.10 with a similar result for reduction steps whose cut formulas are not propositions.
But this fails t.o work, for on the one hand, such a reduction step may require that a
type of arbitrary complexity be substituted for a variable that is part of an assumption
that is also a sentence, and oni the other hand, a reduction step whose cut formula is .
a proof may introduce a new cut formula which is a proposition and whose type is a
context of arbitrarily high degree.

On the other hand, Theorem 4.10 is of help in proving normalization, for it shows
(via Lenma 4.3) that the types which are proved to be in Prop can be formed from tile
simple types and Prop by V in much the same way that the types of TAP are formed
from type variables by the type constructors. This turns out to make it possible to
adapt a proof of normalization for TAP to TAC. The proof we have chosen to adapt is
a proof of strong normalization due to Stenlund [Ste72] S5.6. lowever, the proof needs
to be modified in much the way that the proof of [Mar7la is modified in [AMar73].

Convention[Let 7) be a deduction whose conclusion is M A, where A =. (Vxl
A,). . . (Vxn : A,,)B, and for i = 1....n, let, DI be a deduction with conclusion Ali A', -. _.
where'

A' = [AM/xl,.... Ai-I/xi-]Aj.

Then

A A
.p,..... n,0

will denote the d ehduction

"PI S

At : A
(Ilq") 'Pt

.11 (Vx1 A 1).. (Vi-,, :A,)H : A,

(V,)

,AlA!n :['lIj'](Vx.a., A.,) ... (Vjr,, A,,) I? S

11.1, M" I (V."AI, , v
A1,111 ... A ,, •11" ",,

,,h., A=t p , ,t,, ,/,J, " III ,,,t(H" -[I ,/j-,. A ,,/j-,,,l . (If it = e) .elv
h,.-n it will d, ,,e 'I) it. ,V.)).'

-a.-.,.

d,

M %W

4%

.1'JM"< %

Deffiitioni 4.13 (TyIx! of a dc~luctiOnk) IfT1) is a deduction whose conclusion is M .' ,i

A, then A is called the type of D.

Definiitiont 4.14 (Strongly ntormal (ledmution) A deduction 7) is said to be stronglynormal (SN) if every reduction starting with D terminates in a normal deduction.

Our aim is to prove that every deduction is SN.

R'temark In the proof, we will be making importantt use of tile classifications if) Iefinli-
tion 4.11. We will also be d isc i..sing a number of deductions at the samne time. It will be
important that each formula in each deduction be class.ified the same way in any other 0
deduction under consideration. For this purpose we will need to know that tile well-
formed environments of different deductions are all consistent in that none of them have
assumptions assigning different types to the saine variable. lo ensure this consistency,
we will assume that we are starting with a geieralized well-formed environment 170 that
is an infinite set rather than a finite sequence of assumptions. All well-forined environ-
ments actually considered will d raw their assumpqt ionms from r0, and no variable will he'. .. : € /.

ass igned more than one type in I'0. Furthermore,, we, shall as sume that ally finite Subset.
of r0 can be extended to a larger finite subset. of FI' whose elements call be ordered in-2' .Pl="'. ,l

we shall assume that its discharge.d a.ssimipqtionls belong to I'(; such a deduction ,will be ,%

called ro-acceptable. A terin which is them type. of a I'0-acceptable deduction will be
called a r0-type. We shall a.st,,e that any te'rm is a 1'0)-type which can he built up AW--
from Prop, Type, and the simleh typo, anmd sitnph! genceralized con text~sobtainable from '

assumptions in ro. (Thbis ssumlwtio,, is ,asy to, satisfy; if we start with a candidate for -

F0 for which it is not true, ,we exlcnd it. with new a.suniptions (for new variables), and
we keep doing this initil t~here" ar, ,noigh ass,m ltions.) A i'n-prolposition variable of %-; ' _

type A, where A is a c'ontext, is a variable r. .su,,' that r : A is in I'. And finally, a 2 .,k

('()-term of type A is a term XM sti'h Chat. A1 : A is iprovable from a.ssumptions in I'n1. [

Definitioni 4.15 (G roixnd tyl)4! set) A setI S, f I'-acceptahle, de'ductions Is r . 1.=2'
grounded type s et, (ground) if the Following t-hr,,v condititnis are satisfie.d: - "'

(a) Every dedtiction in S is SN;, _.l
(h) If "I,(N) is a Ipart. (ofa dediLioii ,I,,;,iii,'d f'r,,i, a dohlct~ion,:

. 1 : 0

A/ H

107 a on

AtenAiscledte ye fV

K
r

by substituting N for x, if Va is SN, and if

P 3

N:C
(Eq") •

N:A

Al1 (N) $
[IN/xlA : [N/xjl1

is in S, then

[x: A]

TD(t) 9 W 2AM:I3 A:K

Ax:A M :(Vx : A)B (VK 1 1) V

Ax:A l: (Vx: C)3 N: C

(Ax:A.A.I)N : [N/x]B

is also iln S; aid

(c) If P, ',, are SN, and if 0]

r : A 'I

{h.A

is a l'0-acceptable deduction, then it is inn S. A ground inn which all of the deductions
I,;v, a given tlype A will be called a qround (if typc A. A .

ExatlAlcs The sel of all SN l'0-acceptable ded ict.ions is ;t ground. Tis grond will be
Called SN. If A is a l'o-type, then the se. of all i' 0 -accept.able (led uctions of type A is a
-round of type A; it. is called SN A

Definition 4.16 (Prop~osition tern) A prolpositwn ,eim isa trrn A such that A : B_
i. a propositiotn. A proposition term whImli is aMso a variable is a proposition varnable. If
H, (V- H, ... (V,, : U,,) Prop, tIiei, terms Ali_ . , , such t.lf , for i 1 , - ,n, .. _

I11 1?, /X~ ,~ I/j1,-. 1 111, Cvgj h-- provi-d from hypotheses fromi 1',, will be c;Illeil

% %

S 6

ar-gumient termis of A. If 1& 0, Iflieii the termi [variable] is called i trtnr tcrin

[sentence variable]. (Note that if A is a proposition term and Al,. At,, are argumnent,
terms of A, then AM, . M,, : Prop call he proved from assumptions itm .

For the next definition, we need to recall what we know about P0-types. We know
that any such type (except a supercontext) call be proved (from assumptions in, ro) to -

be in Prop or in Type, and that a deduction proving that A is in Prop or Type which has
been transformed by Theorem 2.5 canl end with anl inference by rule (Eq'n). If w,- .k
such a deduction which is c-normnal and dlelete this last inference, we get what we might
call a standard form of A, to which A converts. If we add to these standard fornis the
.standard forms of the supercontexts, theni this standard form will either be Prop, Type,
a simple type, a simple generalized context, or else will have thle form (Vx B)C. When
we speak of making a definition by induction on the structure of a type, we will mean
by induction on the number of occurrences of V in its standard form. This mirrors the
construction of the type from Prop and the simple types by the universal type-forming
operator. We can indicate this induction by the following definition:

Definition 4.17 (Rank of a l'o-type) The rank of a [a-type A, rk(A), is definied as
follows:

(a) if A is a simple type or a simple generalized context, rk(A) = t0;

(b) rk(Prop) = rk(Type) = 0; and

(c) rk((Vx : A)!?) =rk(A) + rk(l?) + 1.

Definition 4.18 (Comltputability predlicate) Let At be a l'1 -Ieriii of type 4. Bly
iduction oi rk(A), a cornputability predicate of type A4, denoted 1)[Al] is defined as

follows:

(a) if A is not at context, then p[M] EA4;

(b) if A =.Prop or Type, then p[M1 Is a grouind of type At; andl

(c) if A =.(W 1 : A,) . .. (Vxr,, : A,,)Prop, theii p[M] is ;a Function whose argilinwnits

are computabi lit~y p~redicates p(Ala]..p[Al1 j oif types All .At,,, where eac ia , is aI

F 0o-terni of type Ai, andl whose value is at grouind of type Al All At,,

F'or thme next dlefinlition, we need to proceed by a kinad of imadactioit ia thme struicture
of a term. For this imid iction, we tneedl to note, that if aI terin A is niot. a l'o-proof, themi
it is a l'o-proposition function, at Fo-context Function, or a stipercoat.ext. Tlhus, if A is
not a Pao-prooF, then it converts to Prop, Type, a l'n)-siniple type, a I'll-simple generalized
Context, (Vx : lI)C (where 13 is neither a stipercontext nor a proof anad where C is not
a proof), or Axr : B? . C (where 11 is neither at supercomat.ext nmor a proof and where

C is neither a supercontext nor a proof). Ilere 11 and C are essenitially siampler thama
A; fuirtherinore, if A converts to a simmple type .rA'l . .. At,,, thmen each Ali is ossiatially

.A".iio 4.1ahlsw (Compu~tbility obaject) Let A(z,..,,)7 1w a torml all of whose
sire e rt i ale A.whis aen astignt ed Folow sipgelesii mitioIy11(,1 occt tin th l aim st. ca eoI0

quONMSUp11

'tKAWA"AAUS h'~N

W 0

Let AI,,.. .,A,, be ro-terms of the types of X1 ,I_ . ,x,, respectively. Let p{A II-. ,p[A.]
be an assignment of computability functions to the terms A,, ... , A.,. Relative to
this assignment we shall define by induction on the structure of A~ 1 . ,,)a corn-
putability objcct C[A(x1 , ... , ,,)] (p[Ai,... ,p[A,]), which will contain deductions of
type A(A,,..,A,) if A(xz,... ,x,,) is a ro-type. To simplify the notation, we let
x be tile sequence x,.... ,X,,, A the sequence A,,... ,A,,, and p[A] be the sequence

p[~..,j[A,,].
(a) if A(z) is a Pao-proof, then CfA(xz)J(p[Aj) is tile term A(A) itself,
(b) If A(z) =. Prop, Type, or a l'o-sirnple generalized context., then C[A(x)](p[A])
SNAA;

(c) if A(x) =. xiM,(x) . .. M,,(x) and is neither a ro-proof nor a ro-simple generalized
context, then C[A(x)](p[AJ) is p[A,](C[M,(z)j(p[A]), ... , CIM .. (z)I(p[A]);
(d) if A(m) =. (Yx :B(x))C(x, x), where B(z) is not a context, then C[A(z)](p[A]) is
the set of all F'O-acceptable deductions

AM! A(A) P

such that if

N: B(A)

is in Cf B(x)](p)[A]), then

At : A(A)

Al :(V~r :!i(A))C(x,A) N B 1(A)

A4N : C(N, A), (e

is in C[C(N,zr)I(j)Aj);
(e) if A(z) =. (Vx : 11(x))(;r(, z) where 11(x) is a context, then C[A(X)](p[A]) is thle

set of all ro-acceptable (led ictioiis

At: I(A)

such that if

H1(A)

I 10*

-UN* i

TN W

is in C[B(x)](p[A]) and if p[E] is any computability predicate assigned to E, then

V

M:A(A) (Eq")

M: (V B(A))C(x, A) E: B(A)

ME: C(E,A),

is in C[C(z, z)](p[EJ,p[A]); and
(f) if A(z) =. Ax: B(z).C(x,z) and is not a l'o-proof, then C[A(x)](p[A]) is a func- 0
tion whose argument is a computability function of type A, where A is a r0-term of
type B(A) (the type of z), and whose values are given by (C[A(z)](p[A]))(p[A]) =
C[C(z, 2)](p[A],p[A])).

Remarks

1. In case (d), note that since B(z) is not a context and since N : B(A), C(N, z) must 0
have the same structure (with respect to the construction of types) as C(x, x). The -
division into cases between (d) and (e) is precisely the distinction between terms
which can, after substitution, change the structure of the type in an essential way,
and dealing with this possible change is one of the main difficulties of the proof.

2. In cases (d) and (e) of this definition, we are assuming that x does not occur 0 0
free in A. Since x does not occur in B(A), this is immediate for those A, which
actually occur in B(A), and for those which do not occur in C(x, A), there is
clearly no problem. For those A, which occur in C(z,A) but not in B(A), since
we automatically change bound variables to avoid clashes wlen we carry out a
substitution, the fact that the bound variable is x implies that it. does not occur
free in these Aj.

3. Case (c) of this definition makes sense only if C[A(z)](p[A]) is a computability
predicate. 'his will be proved below (Lemma 4.6).

Lemma 4.4 (a) If

{ :D , •

for n > 0 is a deduction of type A(A), and ifDj ..., D,, are all SN, then

is in C[A(z)](p[A]).

(b) Every deduction in C[A(z)](1 [A]) is SN., ,

11ll

*
~~~*., . ,



Proof By induction on the structure of A(.-), Note that A(z) is not a ro-proof and
does not convert to Ax: 1(z) .Cx )

Case 1. A(z) =. Prop, Type, or a I'o-simple generalized context. Since

is SN whenever V1 ,. . D,, are SN, (a) follows by Definition 4.19(b). Part (b) follows
innmed iately by D~efinition 4.19(b).

Case 2. A(x) =. xi,... M.. and is not a r0o-generalized context. Part (a) holds by
Definition 4.15(c) and Definitions 4.18 and 4.19(b). Part (b) holds by Definition 4.15(a)
and Definitions 4.18 and 4.19(b).

Case 3. A(x) =. (Vx : B(xz))C(x, z), where B(z) is not a context. To prove (a), let

M :A(A)

be a deduction ini C[A(z)](p[A]) andI let r :1B(A) be an assumption in, I' for which x
does not occur free ini 11). (W~e may assume without loss of generality that the bound
variable x has been changed if necessary to assure that there is such an assumption in
l'o.) Bly the induction hypothesis (a) (with nz = 0), x : B(A) is in C[B(x)1(p[Aj). Hence,
by Definition 41.19(d),

Atl: A(A)
(l'q")

Al : (Vx : l(A))(C(x, A) x :1B(A) 0

M x: C(x, A)

is iii C[G(i:,x)I(p_[AI). Hence, by the ind~uctionl hypothesis (b), this deduction is SN.
Hlence, 2) is SN.

To prove (1)), le

he a ['(-acceptable deduction or type A(A) where 'Pi, . .,, are all SN, and let

N: 11(A)

112

)WIW



I •

be in C[B(z)J(j4A]). By the induction hypothesis (b), ) is SN. lence, by the induction
hypothesis (a),

y:E

is in C[C(N,z)](p[A]). Hence, by Definition 4.19(d),

y:E
{i, .. ...V,,)

is in C[A(z)](p[Aj).
Case 4. A(z) =. (Vz : B(i))C(x, z), where 11(m) is a context. To prove (a), let

M: A(A)

be in C[A(z)](p[A]), and let x : I(A) be an asumption in 1'0. By the induction
hypothesis (a) (with t = 0), z: B(A) is in C[1B(x)](p(A]). By Definition 4.19(e),

1)

M A(A) •

M : (V : B(A))C(r, A) z: B(A)
(V c)

Mz : (;(x, A)

is in C[C(r, m)](p[], 1[A]) for all 1[x]. By the inductio; hypothesis (h), it is SN. llmice,
T) is SN.

To prove (1)), let

y: E
{1, .. P,,}

be an ro-accel)tahlc ,(jCluaion of type A(A) where T1 , .... "D,, are all SN,and It. I 0

F,: B(A)

be in C[l1(z)](P[A]). By the inductiou hypothesis (h), V is SN. Ihence, by the ind,,ctioi
hypothesis (a), S

!y:
V P I ...... "A,., P}

113 I •



is n CC~, z](pF] p[])for all p[F]. Hence, by Definition 4.19(d),

y: E

is in C[A(z)](p[A]). M

Lemma 4.5 If V, (N) is a part of a deduction obtained from a deduction

x:E

M: B

by substituting N for x, if V 3 is SN, and if

NC(Eq")%
N: E (4.6)
V, (N)

[Nlx] A! [Nlx]!?

is in C[A(x)](pfA]), theni

M: B E

Ax:E. Al (Vxr: E)13 (V 1) P 3  (41.7)
(Eq")0

Ax:A . Al: (Vx: C)B N:C

(Ax:A: A't)N [N/xlB

v; also in, C[A(zr)](4A]). "'

I O. M11Ilji hy A Seldin (I 1S861 Theolwer,1 A 2.3 L emij.ia 2.

% IV

14.%



Proof By induction on the structure of A(z). Again, A(z) is not a l'o-proof and does
not convert to Xz:B(x) . C(x,z).

Case I. A(z) =. Prop, Type, or a f 0 -simpile generalized context. The lemma follows
from Definition 4.19(b) and the fact that 4.7 is SN whenever 4.6 is and the hypotheses a

of the lemma are satisfied.

Case 2. A(z) =. zM, ... .Mm and is not a ro-sinple generalized context. The

lemma holds by Definition 4.15(b) and Definition 4.19(c).

Case S. A(z) =. (Vx : B(z))C(z, z), where II(x) is not a context. By hypothesis.

(4.6) is in C[A(z)](p[A]). Let
D•

11: B(A)

be any deduction in C[B(z)](p[A]). Then by Definition 4.19(d) we have

V3

N:C
(fq")

N: E

)n (N)

[N/x]M : [N/]B{I' ...... '.',} 

is in C[C(P, x)](p[A]). By the induction hypothesis,

II

[-: El

V),(Z) 1)

M: B E :

Ax:E. M :(Vz: E)B (VV3i 1)

Ax:E. Al (Vx : C)B (Eq") N :

(V e)

is in C[C(Pz)J(p[A]). Hence, by Definition 4.10(d), (4.7) is ill C[A(z)](i[A]).
Case 4. A(z) =. (V, I:(z))C(z, .), where B(z) is a cotxt.. fly hypt lhisi., -1.6 is VA 0

in C[A(z)J(p[AI). Let 0

F B

15 I 0ma

- •



I

be any deduction in C[I)(;)](p[A]), and let p[FJ be a computability function for F.
Then by Definition 4.19(e) we have

N:C 
(Eq") W

[N/.IM : [N' I
N:E W

S(N)

is in C[C(x, z)](p[F], p[AI). By the induction hypothesis,

IxE

M:B E:K

Ax:E. M :(Vx E)B (Vi.i - 1) D 3(Eq") •]
Ax:E. M: (V : C)I? N:C

(V e)
(Ax:E : A')N : [N/x]B A '

{z,, .... 2',,I/ iN
is in C[C(x, x)](p[-'], 1[Al). lence, by )efinition 4.19(e), 4.7 is in C[A(z)](p[A]). M I 0

Leiinma 4.6 If A(s) and 1[A] satisfy the hypothesis of Dcfinition 4.19, then vf-v.JwI
C[A(-)](p,[A]) is a ground for each term A(A).

Proof Leim s 4.4 and. l .5. U

The following lemnma makes sense because of Lemma 4.6.

Leinia 4.7 (Substitution) Let x be a variable which is not assigned a supercontext as
a type by F0, let A(x, y) be any l'o-type, and let B(y) be a term which can be shown from
l'0 to have the same type as x, wherc y includes all variables ercept x which occur free
and which are not assigned supcrconterts as types by f'o. Let C be a sequence of terms
of the same types as the variables , ?I and let p[C] be an assignment of computability 0
predrIcs to the terms in C. ThI'It

C[A(,, :)](C[B(C )I(ji[C ]), 1[C ]) = C[A(B (), )]([c ]), I
II(; I) S

~-0

JAN

•,,7 %'.,



6 N ]

Proof By induction first on the rank of the type of B(y) and second on the structure of ' 0 WO

A(z, y). For simplicity, let p[B(C)] abbreviate C[B(y)](p[C]). (This is a computability

predicate by Lemma 4.6.)- X

Case 1. A(z, y) is a r 0 -proof. Then both sides are A(B(C), C) by Definition 4.19(a).

In the remaining cases, we may assume that A(z, y) is not a Fo-proof. ]

Case 2. z does not occur free in A(x, y). Then the lemma is trivial. This takes care
of the cases in which A(z, y) converts to Prop or Type.

Case 3. A(z, y) =. zMj ... M., a simple generalized context. Then z is assigned
a supercontext as a type by r0 and hence, by hypothesis, is distinct from r. Then by
Definition 4.19(b), each side consists of the set of all SN deductions of type A(B(C), C).

Case 4. A(z, y) =. yMj(z, V)... M.(z, y), where y $ x is one of the variables in y/,
and C is the term in C corresponding to y. Then

C[A(z, y)](p[B(C)], p[C]) =
p[C](C[j(,, y)J(p[B(C)j, p[C]), .. -, C[M,,(x, y)](p[I(C)], p[C])),

and since A(B(y), y) =. yM 1(B(y), y)...M.(B(y), y),"

C[A(B(y), y)](p[C]) = (p[C])(C[Mi (B(y), y)I(p[C). C[M( B(y), y)](p[C])).

The lemma follows by the induction hypothesis.

Case 5. A(z,y) =. xM,(z,y). .. Mp(x,y). For simplicity, write this as xM(z,y).
Then the type of x and B(y) is

(Vzl : Ej) .. (Vzp : E!p)G, %-- *

where G is either Prop or a r 0 -simple context function, and so B(y) is a proposition -. %
function. By Definition 4.19(c),

* •0

C[A(x, y)](p[B(C)], p[c]) = p[B(C)](C[I(x, y)]( 1 [f(C)], 1C])). - -

By the induction hypothesis, the right-hand side equals

p[C(C[M(C, y)](p[C)),
* 0]

which, by our abbreviation for p[B(C)], is

, ~~~~C[B(y)I(j,[C ])(C[M (1(y), y)](j,[C ]))... < :' '" '

If p= 0, we are finished, since A(B(y), y) =. 13(y) and M(B(y)) is void, so this is just

C[A(B(y), y)](p[C]), * 0

as desired. If p > 0, then we have the following subcases according to Corollary 4.13.1: -

117 %

VV • .

'-':,,5q:S , .0



Subcase 5.1. B3(y) =.A A-:E' . A z,:Ep F( z, Y), whI ere z is the sequence z, I__. zP,
By Definition 4.19(f),

C[B(y)](p)[C)(C[A.B1(y), y)J(p[I)

Is 0

Bv the induction hypothesis on the type of 11(y), this is

C[J)(y)M(I3(y), y)](C: Prop), Y
and( since A(J)(y), y) B.1(y)M(B(y), y), we are (done.

Subcase .5.2. B1(y) ~.yiNI(y) .. . N,,(a), which we may as well abbreviate as yjN(y).
Then A(B(y), y) =. yiN(y)M(B(y), y). Now by Definition 4.19(c),

C[1(y)(p[C])(C[MI?(y), y)I(p[])

IS p~'~
p[Ci](C[N(y)](v[C]))(C[M13(y), y)I(p[C])), 

*

but I hiiis is the same thing as

anid by Defiliniion 4I.19'(c), this is

C [A ( 1(y), y)](p)[C]), .

(]nsr 6. A(-, y) =. (Vz I'(r, y))IV(z, x, y), where I'(xt, y) is not a context. By thle
tinctioni hypothesis,

CA(,y)](jp[fl(C)I, id[C]) =C[E( U(y), y)]I4C])46-
and, for any er in N( y) such tha. there is a i'n-acceptahie deduction' ening in N (C)

r[.(, J)](14011(C)], 1)[4r -: [(J), y)](14[C])
13y De'fin it ion -1. 19(d), thle I inIa foillows.

(asc 7. A(x, y) =. (Vz :E(r, y))1F(z, x, yj), where E(z, y) is a context. Similar to
(;f .1 1 using Definaition 4.19(c). 0

Notationiii tihe following lemmiiia, x will iot (l~, t( seqjuence x1 -',' ?J the S('- 0
1j1inc I/ I.., ,, N the sequenctie N1 . _N,,, B the sequtence -.i,,And JOIDj

Y4 B M I
III, IIiith r o e AS o ,1 .. w l e o eP

118 33

%

%~3 %. % %-%



Leiiima 4.8 Let
xi Aj(y),.... ,, A,,(y)

M(x, y) : A(;, y)

be a

be a ro-acceptable deduction all of whose undischarged assumptions are among those
shown, where y consists of all variables which occur free in any type or term which are
not assigned supercontexts as types by I'o. For all assignments of terms B,..., B, to J1.%V.

Vi ..... I. (where for each i = 1,2. . ,,, it can be proved from 1'o that B, ,s in the type
assigned to yi) and for all assignments of computability predicates p[B1 ], ..... pfB,,] to 

i, ..... Bn, if for i = 1,2, ..., n, the i'U-acceptable deduction J-.

Ni,: A'U,)

is in C[A,(j)](p[B]), then .0.

N,: A,(1) . N,,: A,,(H)

P(N, B)

M(N,B) : A(N,B),

is in C[A(N, y)J(p[B])." I

Proof By induction on structire of ( )., )- '..

Basis:

Cast I. D(x, y) consists of thie axiom (P 1). Since this ',leiictioi is clearly SN, the
leImma follows by Definition 4.19(h). .

Case 2. D(r., yi) consists of I he ssuiui)tmi0 xi : Ai(y). Il Ih'ulmia is immi(late. ,', -

Induction step: The're are the Followinig cases, according t.o the last inferenice in.

Case I. 'I'lTh last iiifirv.nci is by (B..'lrIml.i). Ily )efi.ini .19(h). it. is sulli- 0
cinit t,, prove that (4.8) is SN. By die i,',lictio,, lypilesi.s a,,,,l D,,iii, oll 1. ). the
dedtictions of both premises are SN. Illtice, (.1.8) is SN.

(Case 2. 'lhe last iuifererce is by (Eq'K.). Similar to (Casw I4 1

Case -. 'I'lw last iInfereI is byv (V(!). 1'Iei Al (r, yi) All (;r. j),1 2 (;r, yj).

" c r Ili,, .,,,, , .,,,,,,, [,, I ,,,,.,,,i- ,.,,, A.,.3, ,..,,,,, :,(,,,. -.. -

119 S 0

111~

* 0
P-



anld D(,Y) is

X (Y) x A (y),... Y

A,)'(x, Y) TI"( m, Y) 0

-D'(N, D)

MI ) : (Vx : C(,)(N, B))E(,N,)

is lin CI(Vx: C(N, y)) Ex, N, y)](ptB]) and

DlDP

1)"(N, D3)

M 2 (N, B) (IV, B), 
%e

is in C[C(N, y)J(p[D]). Then by Definition 4.19(d), (4.8) is in C[E(M 2(N, y), N, y)](1411)
Subcase 2. C(-., y) is a context.. By the induction hypothesis,

D, D

N, A, A(1)... N,,: A,,(B)

V'(N, B)

AI(N, B) : (Vx : C(N, B))1<(xr, N, B) %

is in C[(Vx: qC(N, y)) E(x, N, y)](f[B]) a ,d 0 0

N, :A,(/?) ... N,, A,,(I 0

(N, D)

A1 (N,) A(ND),

C[(( y)](j'[Bj). Then by eCli(iN.ion 4.19(c), for any co.imipailty 1 aredc'atf!
)].. ('18s in C[,(N(7, N, a)I(pj41,(N, B)J, i)).t r

1200 0

%' % N . OJ

.?, %

M(NI3) % A(,A)

% k

12(I •

~ ~ \A p P 4 P,. 'A • II



Lh

I 0

sufficient to find a computability predicatc p[A.,(N, y)] such that

C[E(z, N, y)](p[M 2(N, B)], p[B]) = C[I'(M. 2(N, y), N, y)](,[D]). (4.9)

A suitable such function is the one such that

p[M 2 (N, B)] = C[M 2(N, y1)1(p[O]).

That this is a computability predicate follows from l)efinition 4.18 and Lemma 4.6. That. e

(4.10) holds follows from Lemma 4.7.

Case 4. The last inference is by (Vni). Thei A(x, y) (Vr C(r, y))E(z, x, y),

M(x,y) is Az:C(x, y) . M(z, x,y), and V(x,y) is 0

Ix C(x,y)], x : A,() .... 'z,, A,,(y) A,(y),... ,xA

*P'(xiiy) D"X, y) 3.

Ml~x,z,y) : E(z,x,y) C(T,y :V)

4 (Y,.~zi I)Azx:C(r, y) -Mi(x,x, y) : (Vx: Czy))lE(x,:r,?I) r ,~.

Subcase 1. C(x, y) is not a context. Then =- Prop. By the induction hypothesis, for

all deductions

I' : C(N, D)

in C[C(N, y)](pI]),

I1: C(N, D) N, : /A'(11) Nit A' ,,(B) •

a~A AI(]',N,IB) I('N,DB)

is iii C[ I,(/', N, yj)](jPB]) liiice, by lA',,masIII A ,(b) and .1.5, , .

I S

C * ( ] N , : A , .. N , , : A ,- N , N i A *.. . , , 1 ,. .. -)

C*

M -( * 11.(x) (V'" /I ,C.,, '.,*: ''(wi ,),,

(Ax: ("). AM (* 1' ,'-'(1', '

121

i~l t !.

1-



0

where A* A (B), X" X(N, D), and X'(Y) X(Y, N, B), is also in C[E(P, N, V)I(p1 B])
Since '." is arbitrary, this implies by Definition 4.19(e) that (4.8) is in C[A(N, i)](p[B]).

Subcase 2. C(z, y) is a context. Then o = Type. By the induction hypothesis, for
all dcc tions

F : C(N, B)

in C[C(N, y)](p[B]) and for all computability predicates p[F],

F :C(N, B) , N, : A' 1(B) .. N,, A'(B)

D'(F, N, B)

MI(F,N,): F(F, N, B)

is in C[E(x, N, y)](p[F], p[BJ). Hence, by Lemmas 4.4(b) and 4.5, 0

v E1 /),, V, /),,

[Xr (" ], N , : A *I ... N ,, A *, N , A ,..... N , : A ,*

5P'" (,r) P

A,(x)K D'" C.'

*(Vizi 1)
A:C" At(x) : (Va,: C')E(x) F: C

(Ax: C*) Mj*'()F : E'('),

where A*, X', and X'(Y) are as in Subcase 1, is also in C[E(x,N,y)](p[FI,,[B]). .
Since P" and p[F] are arbitrary, this implies by Definition 4.19(d) that (4.8) is il
C[f A(N, y)](;4).)

Casc .5. 'The last inference is by (Eq"). This is straightforward by Definition 4.19.

Case 6. The last inference is by (-n). This is trivial by Delinitioi 4.19. U

Theorm 4.14 (Strong nornializatiou) Evcry dcdaction in TAC is strongly normal. •

Proof In Lemma 4.8, let Di consist of the assumption xi : Ai(y) and let Blj be y~j. Then
for any sequence p[B], V(z, V) is in C[A(z, V)I(V[AB), and so is SN. M

• N
122 NI

I( Pr -

- ~ ~ ~ ~ ~ ~ l .VNW.I e~'



I S

4.4 Consequences of the strong normalization theo-
rem

Although we have proved the strong normalization theorem for deductions, this theo-
rem is usually proved for terms. We saw in Theorem 2.2 and Corollary 2.2.1 that for
TA, the normalization theorem for ternis can be proved from the strong normalization
theorem for deductions by using the subject-construction theorem. We do not have this
theorem for TAC in a form that is easy to st-ate. Nevertheless, there is a relationship
between terms and deductions, and we call expect to use this relationship to obtain a
normalization theorem for terms. *

Theorem 4.15 (Normalization theorem for terms) If I' is a well-formed environ-
ment and if

I' -rAc At : A,

then M has a normal form.

Proof By Theorem 4.14 there is a normal deduction V of "

I' F'i',w N : A,

where A C> N. The proof is by induction on the deduction VP.
Basis: If V consists of an assmnpt.ion, then N is a variable, amd so it. is in normal 0

form. If /) consists of the axiom (P T), then N is Prop, which is in normal form.
Induction step: There are the following cases, dlepending oi the last inference in V.
Case 1. The last inference is by rule (scK'l"ormatiom,). 'l'h,'n A is K', N is (V: B)C, m "

and D is

[x: 1]

b:, '(:)

(VK : )':ormmatio

By the induiction hypothesis, I amid C have normimal forlls; hence, So does A. S S
Case 2. TIle last inference' is by rule (l"q'i). l'len ly the idtiction hypothesis, N

converts to a term I (to the left of the colon in the premise) which has a normal form.
Case 3. The. last inference is by rule (Ve). ''hen N _ 'Q, A -Q/W,' and V) is

(Ve)
PQ: [Q/x]'.

123 0

N%%



* 0

By the induction hypothesis, I' and Q have normal forms. Furthermore, since V is
normal, there is no x-reduction possible in it. It follows that at the top of the left branch
of 1) (and hence oftPI) is an uadischarged assumption. It follows that P =. YQi ... Q,

for some variable y. It follows that Ql. Q,, all have normal forms, and hence that
PQ =. yQI ... Q,,.Q does as well.

Case 4. The last inference is by rule (Vni). Thei A (Vz :I)C, N AX:B • P, and

[r: II]

P: C B:
(Vgi - 1) ,

A x : P . I (V x B )C . ( 1

By the induction hypothesis, B and I' have normal forms; hence, so does N Ax:B . P.
Case 5. The last inference is by rule (Eq"). Then N is the term to the left of the

colon in the premise, and so by the induction hypothesis it has a nornial form. - -

Case 6. The last inference is by rule ( T). Then N is obtained by changes of bound
variables from a term which, by the induction hypothesis, has a normal form, and so N
has a noriial form. *

Note that we have not proved that every term is SN. If we try to replace the conclusion -

by -N is SN" in the above proof, we can see that Case 2 breaks down, since not every
tern convertible to an SN term is itself SN. Indeed, if A is SN, and if z V FV(A),
then for any terms H and C, (AxJ: . A)C =. A; now if C has no normal form, then
(Ax: B . A)C is not SN. This shows that we cannot strengthen the theorem to prove that,
N is SN. (Of course, to prove that A! is SN is somewhat more complicated; we will take
this up below.) 0

It might appear that since only (';ase 2 breaks down, and since the conclusion in this
case is not a proof, we niight want to add the assumption that N : A is a proof. This
will exclude Case 2. But now we hav trouble with Case 4: we can conclude that P is
SN, but not that I1 is SN. Indeed, by the remarks of the previous paragraph, 11 might
nol be SN.

Niitchell [Mi t861] delines a fiicti, E Erase for 'IAP which deletes the types of the -
boumil variables. Wheii this functioii is modilied for TAC, it is defined ; follows: - A

Deffiition 4.20 (Erase f, netnioi) (a) Erase(a) a if a is a constant or a variable;
(h) Erase(A N) - Erase(M)Erasr(N); '

(r) ,;ras(Ax:/l . At) AT . Erasc(M); and

(d) L-'rasC((Vx A ?)!) (V- : 'rasr( il)) Lrase( II). 0

Note thai ,'x'epi for claise' (d), we' are iiiappiiig termis of TA(C to pure A-terms. [it

t;li. flit, range of the f iction /;'ras is the se.t of'l'a( ternis ()'finition 2.17).

121

*

%~*-,



We can now prove that if A is not a context in the theorem, then Erase(N) is SN. To
extend this result to Erase(M), it is enough to note that deductions of proofs do follow
the constructions of the terms except that additional inferences of formulas which are
not proofs are added at various places on top. This will give us the following result:

Corollary 4.15.1 Under the hypothcscs of "'Jheorrin 4.15, if A is not a context, then
Erase(M) is strongly normal.

There are some further corollaries that follow immediately from Theorem 4.15. These

corollaries are standard consequences of normalization theorems.

Corollary 4.15.2 For terms M and N such that

r F-rAC M :A,

and
I' FAC N : A,

where r is a well-formed environment, it is decidable whether or not A :. N.

Corollary 4.15.3 For a terns M and a well-forned environment I', it is decidable
whether or not there is a term A such that

I' FTAC Al :A.
We can also prove a p~artial converse to 'lh orem 4.2, relating ' TAC to TAP. Recall " 0

that the interpretation of types and teriis of TAP as terms of TAC is defined as follows:
first, we divide the variables of TAC into two mutually disjoint classes, the first for
interpreting term variables of TAP and the second for interpreting the type variables.
Then, for a term or type A of TA', we define A. a terin of TAC, as follows:

(a) if z is a term variable, then x* is a variable of the first. class distinct from all variables
y* for term variables I/ distinct from x; S
(b) if a is a type variable, then a* is a variable of the second cla.s distinct from all
variables b° for type variables b distinict from a;

(b) (a -,3)* is (V2" : (v)*/3 for a (term-) variable x which does inot occur free ii) W or

(c) ((Va)Y)" is (Va : Prop) v ;

(d) (MN)* is AI'N" *

(e)(A)'i l;

(f) A r:n . Al * is Ar* : W . Al' and M

(g) Aa. A is Aa" : Prop . M.

It is e;asy to show that if n is any typ,-schei,,e of ''A ', th.n W" is in mmormal form. and .
that if Al is any terni of'l'AlP which is iii ,ormal forni, then A1 is also in normal form.
Note also tha. this interpretation takes amy /"-coit.raction of TA P into a -cottraction,
of '[AC.

1
2 C> . Iem,irk I and Iimiley k SoIiii (IISl The,,,r,,ll if,,;

125 I 0

.e



Tiieorciii 4.16 bet r be a sequence

of assumptions in TAP, and let I- be S

Let a be any type scheme in 'IAPI, let a,,..., , include all of the type viariables which
occur fr-ee in a, and let I" be

a Prop,..,a, Prop.

If V is a normial deduction in TAG of

r*,i I, - AI'

wher-e M is a termn of TAP, then there is a normal deduction V) in TAP of

F' F M .*

Proof Note first that Lemmas 16.67 and 16 68 of Ilindlcy & Seldin [IIS86] hold( for TAkC
as well as for 'fAGL; the proofs for '[AC are obtained by a minor change in notation
froin those for 'LAGL.

T1he proof is by induction on the deduction 'P. Note that by hypothesis, T) does not
consist, of axiomi (P T), and its last inference is not by any of rules (ten'Formation) or
(Eqj'n). Furthermore, since we are assuming that D has been transformed according
to T1heorem 4.1, we may assume that the last inference is not by rule (Eq"). For the
types of the assumptions (both discharged and undischarged) are all in normal form,
and if thle typ~es of tile premises of aly rule except (Ye) and ([,'q") are in normal form,
then so is thme type of the conclusion. With regard to inferences in 7) by rule (Ye) the 0
left, branch above each such inference contains inferences only by the same rule and rule
(Eq") and at the to;) of tile branch is an assumption (since V is normal); and it is not
hard to see by beginning with the assumnptio9 tChat because the type of thle left premise
of each such inference by rule (Ye) is li* for sonme TAP' type scheme fl, so is tile type of
thle concluisioni. It follows that each of these types is in normal formi, and so there is no
iniference lby rule ( Eq") il time b~ranlch. Tlhere are the following remainling cases:

Case 1. 7) conlsists of an assumption. Th'len Al is xj, a is aj, and 7)' consists of the
correspond ing assuitmption iii TARP

Case 2. 'lme last inference im PJ is by rule (Ye). T[hen since V is norinal, the only
in ferences wh ichI occur in the left braiicli are by rules (Ye). Furthermore, Ml* is in normal
form. Now it. follows from this that At' has tihe form zrAll . .. Mp,, where r is assigned a

type by thme assumption at. time top) of thme branchm ( which is not, d ischmarged). lience, x is ____--_

one of thme xr . fly thme definiiitioni of tihe initerpretation, it. follows that each Ali is vi I.her

Vfr some 'IAP terin N,, ill which case 1i.'w type assigned to it is j for somne TlAP %

I% pr sche'mme j,, or else some lir for snime TlA I' type scheime in i which ca-se thme type%

12* 0-

Z~



*

assigned to it is Prop. By the induction hypothesis, there is a normal deduction Vj of
r F- Ni : -j for each such Ni, and then rules (- c) and (Ve) of TAP can be used to
obtain D from the assumption zi : ai and the deductions Dj.

Case 3. The last inference in V is by rule (VPi). Then a is (Vx : B)C and A1 is
Ax:B . N. By the right premise, B is fl for some TAP type scheme 0, and it follows
that z is some y*, for a 'lAP term variable y, and does not occur free in C; furthermore,
C is -t* for sonic TAP type scheme y. In addition, N is P for some TAP term P. It
followsthat if the last inference is removed from V), the result is a normal deduction V1
of ",Y " :/13, I" I-TA - I'" : -". •

By the induction hypothesis, there is a normal dteduction VP1 ' of

',y :/I F-TAI' 1

and D' is obtained by an inference by rule (--+ i).
Case 4. The last inference in ) is by rule (VTi). Then a* is (Vz :B)C and M is *

Ax : B . N. By the right premise, B is Prop. Ilece, x is #* for a TAP type variable a,
C is #* for sonic TAP type scherne #, and N is P for some TAP terin 1'. It follows
that if the last inference is removed from P, the result is a normal leduction P, of

1,, 4, a :Prop F-TA: I .

By the induction hypothesis, there is a normal diduct.ion P' of

Since tv is (Va)i3,')' follows by ain i1fereiice by rle (Vi).
Case 5. The last inference, in 1) is by rule (-). Tlhis case is trivial since the saime

rule (essentially) is also a rule of 'I'A 1). •

Corollary 4.16.1 Undcr thc hpollotlhcs .. s o I/th Ih,-ot, if N A* and if A
and if

1" l 1- i A C . N , ,

Ihen I' Iil,

127



4.5 The theory of constructions: sequent formula-

tion

In this section we shall consider an alternative formulation of the theory of construc-

tions. It is a variant of the form in which the theory was originally presented in Co-
quand [Coq85], and is closer to the presentation in other papers by Coquand and Huet

than is the system TAC.
As we saw in the last section, every rule which discharges an assumption of the form

x : A has a premise not depending on this discharged assumption that is either A : Prop
or A : Type. If we wanted to, we could take these premises as justifications for the
assumptions instead of premises for the rules; this is the approach adopted by Martin- 9 0

Lof in his work (see his [Mar75], [Mar82], and [Mar84]). The main reason this is not
done in TAC is that it would require that premise to be written above the assumption,
and then the assumptions would not occur at the tops of branches, an inconvenience
for the theory of a system such as TAC. But for the form of the theory of constructions

presented by Coquand, it is the most useful approach.
'[his form of the theory of constructions is what is known as a sequent calculus. A 0 •

seq lent is an expression of the form-

I'F -E, (4.10)

where I' is a (possibly empty) sequence of formulas and E is a formula. This particular
sequent calculus is formulated in such a way that the only nonempty sequences that can 0 •
occur to the left of the turnstile (the symbol '-') are well-formed environments. This will

make unnecessary the premises which "justify" the discharged assumptions; for these
assumptions will all occur to the left, of the turnstile in the premises of the rules and
will hence be part of well-formed environments, and so these premises will autonatically
hold. The fact that I' is a well-formed environment will be equivalent to the derivability

oft lie seqiiemit . •

F' F Prop :Type.

The system will be called "''ACS. I
Note that until the equivalence of TA(" and TACS is proved, it will be necessary to

specify the systeim with respect. to which an environment is well-fornied. Uintil notice to
the com trary is given, a well-formed vivironielit will nican with respect Ito TACS.

Definition 4.21 (Th,, type assignumt system TACS) The system TACS is a se-

q,,,ent. calculus; its sequents are of the forn

I' , (.- E)
. , .' _.

where I' is a sequnc,- of ''A( forimulas and F, is a 'i'AC formula. The system has one •

(I 1) H Prop: Type

%

% %

16

J 'p



Its rules are ms follows, where, in eih case, X Is a variable which .(t(- iiot. occur free ii.
I' or in A, and #cis any kind:

I. Well-formed cvmrournetals:

(Pi) I' F- A_ ___

1',x : A i- Prop: Type

II. Inlroductiou of producl:

(vi) !1, x : A- F :1 K 1 •

r i- (Vz: A)? :,

III. Iniroduchion of a variablc:

Pe I F- Prop: Type Condition: y : A occurs 0
in rand y does not occur

I'F-y:A, free in A. IlkW

IV. Lamnbda introduclion:

(Ai) 1',x:AI- :F l B

I' F- Az:A . Al : (Vx : A))),

V. Applicalion:

(Ve) I'F Ml (Vx : A))? 'F- N: A

I'F- AfIN: [N/jI,

VI. Equalily Y,-cs:
(Eq,") If A . B, he,,n

I' F-A IA i

I' t- A: A,

(lq'n) If A B. It. then

I' F I? e

I' F-A:

1/1I. (hanvcs (of hound flanablrs:

129 I 0

P r o

= ----'-a -~ '~ -



If N is obtained from M by changes of bound variables, then:

I' I- M : A

I' F- N: A.

Ve shall now establish the equivalence of "I'ACS and 'TAC:

Leinnia 4.9 If I' -rAC:S E for any formula E, and if I" is any initial segment of I'
(possibly including r itselJ), then each derivation of F F-,rACS E' contains a subderivation

of r, I-TACS Prop : Type.
0 0

Proof By induction on the derivation of F FTACS E.

Basis: If r FTACS E is the axiom (P T), then I" is empty, and the result is trivial.

Induction step: We assume the property for each premise of a rule and prove it for

the conclusion.
If the sequence to the left of F in the conclusion is an initial segment of that of at.

least one premise, this is trivial. This takes care of all rules except (Pi). In this case, 0 0
r is i, A : Prop, and E is Prop : Type. If F' is all of F, then the entire deduction is

what we seek. Otherwise, ' is an initial segment of I',, and the result is trivial by the

induction hypothesis. M

Lenuna 4.10 If r F-TACS Prop : Type, then F is a well-formed environment.

Proof By induction on the pair (nm), where n is the number of formulas in F and n1

is the length of the derivation of I F'rA:S Prop : Type.

Basis: Trivial, since F is empty.
Induction step: Assume the leujia for any iiitial -sul'Se(qtur.c:; ' f r, aid suppose

that F is F', x : A. By the induction hypothesis, I' is a well-formed environment. Now

the only riles of which 0 0
i'l, X : A F-TACS Prop : Type V

can be the conclusion are the equality rules and (Pi). If the rule is an equality rule, then

by Lemma 4.9 there is a su bderivathoni of the derivation of the premnise of the inference
which is a dherivation of

I", .: A F'rACS Prop : Type

aI(l so the conclusion follows by the iild iction hypothesis; if the rule is (Pi), then it -.

follows that x does not occur free iMi I" or in A and that

I" F',a. 5 A K. - "

Since I" is a well formed environanejin, this implies that I' is as well.

Lenia 4.11 If 'F- FA.s l', the,, I',s u 'll-f,,nmri, d cuvironic,t.

aroif l,tan1,;ts -1.9 ;and d 1 II0 ,

130t 0 0

- %
.0 C A

I:1(} • %



. .]d, %

Theorem 4.17 There is a formula E such that I' FTACS E if and only if F is a wall-
formed environment.

Proof The "only if" part is Lerina 4.11. riw "if" part is easy using the axiom and
rules (Pi) . 41l

.% A % , .

We are now in a position to prove the equivalence between TAC and TACS.

Theorem 4.18 If
I'I-TACS E, (4.12)

then S 0
I' F-TAC E. (4.13) , -

Proof By induction on the derivation of (4.12).
Basis: (4.12) is axiom (P T). Then r is empty, E is Prop: Type, and (4.13) holds by

axiom (P T) in TAC.
Induction step: The cases are by the last rule used in the derivation of (4.12). %

Case (Pi). Trivial. . '.
Case (Vi). E is (Vz : A)B : xC, where x does not occur free in A or 1', and thmw prenise , .,

y the inductio hypothesis,..

', : A F-TAC IB : K.

Furthermore, by Theorem 4.17, 1',;r: A is a well-formed enviromnrt (with respect to4
AGS). This means that the derivation of (4.12) includes a subderivationl of

I' -TACS A: K1
.

Ilemcc, agaim by the induction hypothesis, .,

%* %I' 1.,^C "I K'..%,
Ilence. (4.13) follows by (,tzC'Forimatioll). %

(a.sc (Pc). Trivial by the conv'imt.ioms or matural deduction sys~ems. •
Gas; (Ai). Similar to (.ase (Vi), using (Vozi).
Case (Ve). I' is A N . (Nb:] H. amd the Ipreilises are

I' F-TACS At : C (1d I F TACs N : A,

where C =. (Vx A) 1. By the iidictioi hylpothesis .

I' F- ' A C A I ( a n d I' F- T A C N : A . 0 _

('1.13) then follows by rules (El1") and (V e).

131 I 0

I* 0NO



Case (Eq"). Trivial by rule (Eq").
Case (Eq'tz). Trivial by rule (Eq'K). 'dh~

Case (~.Trivial by rule ()
For the converse we have:

Theorem 4.19 If l'is a well-formed cnvionment, and if(4.13) holds, then (4.12) holds.

Proof 1By im uction on the proof of (4.13).
Basis: If (4. 13) i.s axiomi (P 1), then (41.12) follows by axiom (P T).
Clndctin st p: 'he cases are by the last rule in the deduction of (4.13). S
Case (KK'Forlnation). (4.13) is"

I' -''AC ((Vz : A))B : ',

where x does not occur free in A or in 1'. ''he premises are

I' tH'AC: A :K and Y,z : A I.T l' '. I'

lence, 1',x : A is a well-formed environment (with respect to TAC), and so by the , -
induction hypoth,,si.s :" ,

1, x:A F-TACS I' r~

llence, (.4.12) follows by (Pi).
Case (V '). (4.13) is S S

I' F-,lCA, M N [N/lz]1,

where the trem,,ises are

I' t-TA Al : (Vx: A)I1 and I' trAtC N A.

By the induct io hypothesis,

I' 1JA(:s Al (Vx "iA)H and I F-I.AS N A.

linc,.. (4.12) fOllows by rulh (V v).
('asC (V, i). (.1. 13) is %

I' F1 
rA( Aa.:A . : (Vx - A ) HI, "

wh'lere thpei' ses mleW

1',J" " : '-TA(" Al I V anld I' VI'AC A :

where x does not occur rev' ii, A or in I'. It. follows that I', x A is a well-formed
eimronm ,'ilht repecf to TA(U, anl so by the induct.ion hypothesis,

l, S A. : i.

I .n ,',' (-I 12) I,lws lv rtlc (Ai).
' 0 , , (I '"). ( I', .). , ( ....). Irvm;l l g l,' 'rr''si)oln]l t il I'\( ' " . ,,' m' T A" "

*.P 0



% %

Tlieorem 4.20 A necessary and sufficient condition that (4.12) hold is that I' be a
well-formed environment (with respect to TAC) and that (4.13) hold. 3

Proof Theorems 4.18 and 4.19. E

Corollary 4.20.1 An environment I' is wri-formed with respect to TAC if and only if
it is well-formed with respect to 'lACS.

For this reason, we shall no longer splcify the system with respect to which an en- .. . %

vironment is well-formed. "

Remark The system TAGS is slightly more general than the sequent version of the
theory of constructions presented by Coquand and luet in that its equality rules are
more general. To obtain a natural deduction system equivalent to iluet's system, the
rules (Eq'tz) must be deleted, rule (Eq") must be replaced by the two more restricted
rules rlsM:A IB: A=.l :• •

M :B,

and rule ( u) iust be geueralized to allow changes of bound variables in both parts,..
of a formula M : A. The corresponding changes in TACS include introducing equality
rules corresponding to those given above, and modifying rule () accrding I V

to emplimize (lie e:quivalenc-e. In Pottisigeers system., whtih ite caldls roc 1, rides (Prin i) And (Vi)aw,
re p la r e d , r e s tl c iv e ly , bjy I ly p ( 1 " - A : K =.- I ',x : A F -r : A ) at n d It ,it ( 1' F , G - ; I ' . f' - '). ' "% . . . J

Pot tinger proves that TOG i is etwiv',ent toTlACS, (whic'h he' 4alls "IOC 2). Since I'M I inge,".s TOC' I i%
a sequeitt version of TAC in the style of IFitch IIFits 2], h,,tinger's eewivalence remilt crai b inlts ,idlorcId ' -
attother form of this theorem. .,a o,,,,
n"lotigrs "1O(; I (see the Ip'eviols GNA1t1Ote) actaltdly tas.s hi.s more retited Vem' iol 4, Ih," 1p, %_ I

equality 0"I.h -. ' "/.% ".%-

% %

1:13

__ _ _ _ _ _ _ _ _ _ _ _ _ '

3
1otne Pt7 rpssas(1e1 !ri~l&intid~ oe olGtaii ASailhls*..



• •i

* 0

I

Chapter 5

REPRESENTING LOGIC
AND MATHEMATICS IN
THE THEORY OF 9- •
CONSTRUCTIONS

It is now time to show that the theory of constructions can be a useful basis for the
ULYSSES system, and to show that we can represent many important concepts from
logic and mathematics in the theory.

This representation has actually been done by Coquand and Iluet'. However, their
presentation consists of little more than definitions and examples, and so a number
of people have doubted the power of the theory. lere, in addition to the important
definitions and examples, we shall look at some proof-theoretic consequences of the
strong normalizatio theoremi to show that these concepts behave the way we want
then to.

We egin in Section 5.1 with the representation of propositional and predicate logic
with equality. In Section 5.2 we discuss the addition ofaxiorm to the system and how this
mighit affect consistency. Then, in the remaining sections, we take up the representation 0
of aithlmn#t ic, lmemtntarv set theory, filnctio s, and lists.

%

* 0

131 @

%a



.4_ "-_- .4 - ,-

5.1 Representing logic with equality

We have already discussed representing the connectives and quantifiers of logic in TAP
(Section 2.4) and TAT (Section 3.6). Since TAP can be interpreted in the theory of
constructions (by Theorem 4.2), we can tuse these same definitions. It will be convenient
to repeat the appropriate definitions here. They are taken practically word-for-word
from Section 3.6, but a notation more suggestive of logic will be used.

To use these definitions, we need the arrow, or function-space, type. This now J
becomes the implication proposition operator:

Definition 5.1 (Implication proposition olerator) The term F is defined as fol-
lows:

F = Au:Prop . Av:Prop . (Vx : u)v.

We use either A -+ B or A D 1) as an al)breviation for FAl, depending on the context.

It is easy to show that --+ satisfies the rules (- e)and -. i). This means, of course.
that j satisfies rules (D e)and (D i).

Definition 5.2 (Cartesian product proI)osition) The ronjunciot proposition op-
erator and its associated pairing and projection operators are defined as follows:
(a) A Au:Prop. Av:Prop . (Vw: Prop)((u - v- - i) - i);
(b) D Au:Prop. Av:Prop . Ax:u . Ay:v. Atv:Prop. z:u - v - w. ,zxy; ]
(c) fst Au:Prop . Av:Prop . Ax:Auv . xu(Ay:u . Az:, . y); and
(d) snd E Au:Prop . Av:Prop . x:Aut . xv(Ay:, . ,z:v . z).
We use A A B as an abbreviation for AAJi.

It is not at all difficult to prove from these (dinitions that if A : Prop and 1) : Prop

DAB : A -. I- A A 11, 0 0

fstAl? : A A I A, 6.

andl
sndAf :A AII - I .

Furthermore, it is easy to swe that if At A and A' II, t,,eiu

fstAI(DA fIN) -. if

sndAf/(l)A/?AN) .N.

Definition 5.3 (Disjunction proposition opi-rator) I'lhue disjitactio,, pr'opostoti 0 0
op'rator a d its ;msociated injection and case operat.ors are deti'ed as follows:
(a) V Au:Prop. Aw:Prop. (Vtw, : Prop)((,, -- iv) -- ((#, - to) -- iv);
(Ih) inl Au:Prop Ai:Prop. Ax:u .A , Prop .A' *-. i, .\A :, - - ,, .f :

- .. ... ' X"G € A" "



A

(c) inr Au:Prop. Av:Prop. Ay:v. Aw:Prop Af:u -t to Ag:v i vi• gy; and
(d) case = Au:Prop . Av:Prop . Az:VV . Aw:Prop. Af:u -+ w Ag:v -. w zufg.
We use A V B as an abbreviation for VA B.

It is easy to show that if A : Prop and ilB Prop, then

inIAB: A - A V 11,

inrAB :1) - A V 13,

and
caseAB : A V B -- (Vai: Prop)((A - w) -- ((B -- w) -- w)).

Furthermore, it is easy to show that if C : Prop, M : A, N : B, F A C, and
G: B - C, then

caseAB(inlAIIM)CFG :. FM

and
caseAB(inrABN)CFG =. GN. I* •

Definition 5.4 (False proposition) I = (Vx : Prop)r.

With regard to the existential quantifier, we are now in a position to remove an
anomaly from Definition 3.16. For we now have the machinery to refer to functions
whose values are types.

Definition 5.5 (Existential quantifier) The existential quantifier proposition oper- S S
ator and its associated pairing and projection functions are defined as follows:
(a) Y- Au:Prop . Av:u -, Prop. (Vw: Prop)((Vx : u)(v -- w) -* w);
(b) D' Au:Prop . Av:u --- Prop . Ax:u. Ay:vx . Aw:Prop . Az:(Vx u)(v -* w) . zxy; and
(c) proj - Au:Prop . Av:u -- Prop . Aw:Prop . Az:(Vx : u)(vx - w) . Ay:(Vx : u)vx . ywz.
We use (3x : A)B as an abbreviation for YA(ArA . B).

It not hard to show that if A : Prop and B : A - Prop, then

(3x : A)B : Prop,

D'AB : (Vu: A)(Iu --. (3xB: A)(1x)),

andl
projAlB : (Vx A)((Vu : 1)(Vv : Iu). - (3w: A)(lw) -x). • 0

Furthermore, if in addition C : Prop, : A, N : BAI, anl Z (Vu: A)(Bu-, C), then -
r

projA (C/'(D'AA N) =. ZXAN.

Note that D' differs from D oiily in II i typ<.s postulated for some of the bound
variables. But. this difference is enoigh to miake it. il possible to define' a right projection
for D' that is correctly typed2 . r_ ,1

\We (can also define equality over any type: ,' .

'(On this p,,inl, see' [car8f;j. of ,-,irse, fst wiks it h, ft pr je,'ti, fin,'tion for D'. % ' '. 9

I' *g' %.%I t136~\~i

-V V, %



• .. - -. .

Definition 5.6 (Equality proposition) The equality proposition

M =A N,

where A is assigned type Prop, is defined to be

QAMN,.' ,

where
Q =_Au:Prop. Ax:u. Ay:u. (Vz: u -- Prop)(zz - zy).

It is not hard to show that if A : Prop and X : A, then 0 0

Az:A -+ Prop . Au:zX . u : X =A X,

and that if in addition Y : A, M : X =A Y, Z : A --+ Prop, and N : ZX, then

MZN : ZY.

This gives us the reflexive law of the equality proposition and the substitution prop-
erty; these two properties are well known to imply all the usual properties of equality.

It is not hard to see from this that we have all the usual properties of constructive
predicate logic with equality.

We can also interpret classical logic. One interpretation 3 is based on the following
easily proved facts about intuitionistic logic: 0 0

-'--A D A,--B DB I- -- (AAB) D (AAB),

and
-- A(x) D A(x) - -,-'(Vx)A(z) D (Vz)A(z). 0

Results corresponding to these can easily be proved in the theory of constructions. This
means that for formulas A which are classical, that is for which F- -'A D A, the logic
is classical. Furthermore, all negative formulas are classical and both A and V preserve
classical formulas. For other classical connectives and the existential quantifier, we can
use their familiar classical properties to define them:

A D, B =-(A A -B),

A V, B =-'(-'A A -13),

and
(3,x : A)B E -(Vx : A)--B. I

Since these are all negative formulas, they are all classical.
3 See [CH] §3.3, where this is done for prolmaitional logic.

137

* 0



I 'S

It is not hard to prove that if A is classical (in a well-formed environment r), then
there is a term M all of whose free variables are assigned types in r such that

r I-rAC M :-A v, A.

A second method of interpreting classical logic is as follows: define

Bool _ (Vu : Prop)(u --+ u - u),

T Au: Prop. Ax: u . Ay : u x, S S

and
F Au : Prop. Ax : u. Ay : u. y.

Here, Bool represents the boolean type familiar from the usual programming languages,
and T and F for the familiar truth values. The familiar if ... then ... else
operator is defined as follows: •

Cond = Au : Prop . Av : Bool . Ax : u . Ay : u . vuxy.

It is easy to prove that T:Bool and F:Bool and, if A is any type in Prop and M : A and
N : A, then

CondATMN =. M

and - %  
,
% ""

CondAFMN =. N.

The propositional connectives familiar to most programmers can now be defined: ,% ,

-. - AX : Bool . Cond BoolxF T,

Ak -= Ax : Bool -&xBool F,

andVk Ax :Bool .xBool T.
It is Ihen easy to prove the following:

-kT .F -,F .T * S

AkTT =T AkTF= F

Ak-FT F AkFF =,F

vA.TT =. T vLTF = T - -

VkFT T V.FF =. F

1:18

%W %

A.~ NiV



* 0!

We can then get implication as usual by defining

Dt E Az : Bool. Ay: Boot. -"k(z Ak -'ky),

and its usual truth table properties will follow.
In this formulation of classical logic, a proof of a proposition A is not a term with

that proposition as its type, but rather a term with the type A =8..o T. Thus, unlike
the first interpretation of constructive logic, this interpretation is based on a different
set of terms to represent the propositions. In fact, it is based on the idea 4 that there
are only two propositions, T and F.

Extending this second interpretation to quantifier logic is a bit complicated. The
obvious way to proceed is to assume that we have a propositional function A over some
domain D, which is a type. In this case, this means that A: D -- Bool. We would want
(Vkz : D)(Az) to be T if and only if AM is T for every M : D and to be F otherwise;
but this specification assumes classical logic, whereas the type

(Vz : D)(Az =Boo T) • 0

is treated constructively by TAC, and in general there is no term with the type

(Vx : D)(Az =1o, T) V (3x : D)(Az =so," F).

One possible solution is to use the first interpretation of classical logic, and replace 3 by
3,. But this will only work if D is a type for which there is a term of type 0

(Vx : D)(-,-,Az =S.. T D Ax =1o3. T). I ;
A third possible method of interpreting classical logic is to add a new axiom by

assigning to an atomic constant the type

(Vu : Prop)(--1 V it).

We will have more to say about this in Section 5.2.

'Originally due to Frege.

139 *

4.'

. '.."\' .Y ' '5"



* 0

5.2 Adding axioms to the theory of constructions

As we have seen, when logic is represented in the theory of constructions is that the
formulas are all represented by types in Prop; the terms in these types will represent
proofs. One consequence of this is that assuming a new axiom A will mean taking a
new atomic constant c and adding c: A as a new assumption to the environment.

Now the way we have proved the strong normalization theorem in Chapter 4 guaran-
tees that such constants can be added without interfering with the proof of the theorem
provided that these new constants do not occur at the heads of new redexes. But this is
just the way new axioms are added. Thus, adding new axioms does not have any effect
on the strong normalization theorem. *

But adding new axioms may well affect the consistency of the system. Suppose, for
example, we assume c : l. This amounts to assuming as an axiom 1, i.e., to assuming
the inconsistency of the system. This is one way in which the theory of constructions
differs from the second order polymorphic typed A-calculus: in the latter, Theorem 2.4
shows that the strong normalization theorem implies both the consistency of the entire
system and of any set of assumptions 5 , whereas in the former, as we have seen, the p
strong normalization theorem does not imply the consistency of all sets of assumptions.

The strong normalization theorem does, however, imply the consistency of the empty 6.,,
environment, and thus of the system TAC itself:

Theoreln 5.1 (Consistency of TAC) There is no closed term M such that

l'-TAC M:I.

Proof Similar to the proof of Theorem 2.4. U

Note that this proves the consistency of the higher-order constructive and classical
logic of the previous section.

Although the strong normalization theorem does not imply the consistency of all sets
of assumptions, it does imply the consistency of some particular sets of assumptions.
For example, suppose F is

xi1 : -AI, x, : -A2, .. Xn : an,

where -'A is defined to be A D I. To show that F is consistent it is sufficient to show 0
that there is no closed term M for which

r I-TAC M :A A
4

for any i. As an example, let us prov that negations of equations between terms with
distinct normal forms are consistent if there are no other assumptions. -0

5of course, if we allowed new constants in I'AP, we would get the same sort of possibilities for
iiconsiste.ncy that we have in the Iheory of f'orstritctions.

14

I .1o()

* 0

% 5

%. %' %.V



% %

Theorem 5.2 (Q-consistency 6 ) Let 1' be a set of assumptions in which each formula
assigns to a rm (distinct) constant a type which converts to the form --,P =A Q for terms

P and Q of type A with distinct normal forms. Suppose that there is a closed term 1
such that

r TAC ?: M =A N.

Then

Proof Let ") be a deduction in normal form of

I' FTAC R: Al=A N.

Without loss of generality, we may suppose that V does not contain a proper subdeduc- K

tion with a conclusion of the same form. Suppose that the last inference in V (except for
equality rules) is by (V e). Because V is normal, the only inferences in the left branch of
Dare (V e)and (Eq"). Consider the formula at the top of the left branch of V. Because
of the form of V and of the rules of TAC, this formula is not a discharged assumption.
If it is a formula of F, then the deduction of the minor (right) premise for the inference 0

by (V e) of which the formula in question is the major (left) premise is a proper subd- 
-XW

eduction of V whose conclusion has the same form as the conclusion of V, contrary to

hypothesis. Hence, it must be an undischarged assumption. But then the term of that.
formula to which the type is assigned is a variable x, and R =. zIR, R 2 .. R,, contra-
dicting the assumption that R is closed. lence, the last non-equality inference in V is
not by (V e).

Since .

M =A N =, (Vz :A -. Prop)(zAf -* zN),

it follows that that last non-equality inference is by (VIi), R Az A -- Prop . P, and
V has the formi 7 .* 0]1

[z : A -- Prop]

N(z) Prop: Type A : Prop
(V e)

P: zM - zN A -, Prop :Type

(VTi-l) 
Az : A -- Prop 1 : (Vz : A - Prop)(zM -- zN),

where z is a variable which does not occur free in 1', Af, or N. An argument sinmilar to

the above argument for V shows that the last non-eq inference in Vl(z) is not by (V e), % .

provided that at the end of the argument we note that although z may occur free in P. r P
since z does not occur free in 1' it can only occur free in the discharged assumption, and

6 This term is due to Curry; see [CF58] §8E3, p. 270.
?Possibly modulo some lanipaltioIs invoh'irig ndtlv (El.'P), (l"eq' T), mud ( Eq'); we will not t, h.r

to mention this fat again in what f,-Il,ows.

.1* %

U
* 0M



0 0

the type assigned to z by that assumption makes it impossible for it to occur at the top
of the left branch in A (z). Hence, the last non-eq inference in "D,(z) is by rule (VPi),
P =. Aw : zAf Q, and 'l(z) has the form

2

[W: ZM]

z: A, Prop M :A

Q: zN zM : Prop (-e)

Aw: zM .Q: zM-* zN, (VPi 2)

where w is a variable distinct from z which does not occur free in r, M, or N. By an
argument similar to that above, the last inference in V 2 (w) is not by rule (V e), Further-
more, any deduction of Q : zN must use the hypothesis w : zM. Since D2 (w) is normal
and zM and zN are simple types, it is not hard to see that the only rule that can occur
in D_(w) is (Eq"), from which it follows that Q = w and, more important, M =. N. 0 S •]

Corollary 5.2.1 If I' is as in the theorem, then it is consistent; i.e.,

'/TAC I

This theorem can be generalized somewhat. For example, if the types of the vari-
ables are suitably restricted to prevent substitution instances of P and Q which are ]
convertible to each other, it is presumably possible to prove a version of the theorem for, "
,niversally quantified inequalities or for implications whose consequents are inequalities.
Furthermore, as we shall see in the next section, it is possible to prove a similar theorem ,
for a universally quantified inequality together with a universally quantified implication
between equalities in which it can be shown that if the terms in the antecedent have
distinct normal forms, then so do the terms in the consequent. 0 ]

At the end of Section 5.1, we noted that we can obtain classical logic by taking %
(Vu : Prop)(-i, V u) as a new axiom; i.e., by assuming %

c : (Vu : Prop)(-?u V u),

for an atomic constant e. We need sonie evidence that adding this assumption does not 0 S
introduce inconsistency. Of course, if we start with assumptions which are inconsistent -'

with the law of tile excluded middle, then adding this assumption will lead to a contra-

dliction. lBut in most known systems without such assumptions, the consistency of the
constructive version of the system is well-known to imply the consistency of the classical
version. This makes it likely that adding this assumption to most consistent well-formed
elviroll mmn ts5 will not make the environment inconsistent. *

Whic do 11. a-igil atybw t
112I

4K



.1*,

* S

Remark We have looked here at adding constants that do not head redexes. In general,
when we want a new redex, we define a closed term that can be shown by an ordinary
#-reduction to head the required redex. This does not mean that using such a definition
is the most efficient way to implement the system. It does, however, show that adding
the new constant and reduction rule will not upset the strong normalization theorem,
since any infinite reduction using the new constant and reduction rule will imply the S
existence of an infinite reduction from ordinary fl-reduction using the closed term which
can be shown to have the same reduction rule.

, 4,

* 0

N- -
IN



5.3 Representing arithmetic

As we saw in Section 2.4, we can easily represent the natural numbers in TAC. If this
definition is modified for TAC, it becomes the following:

Definition 5.7 (Natural ntunber type) (a) N - (VA: Prop)((A-- A) -(A -- A)); • 0

(b) 0 M AA:Prop .Ax:A --+ A . Ay:A .y; 'ZN
(c) a, AwN AA : Prop Az:A -. A. Ay:A x(uAxy); %

(d) 7r= Au:N sndN,N(u(N x N) Q(DNNOO)),
where Q = Av : N x N . DN,N(u(fstNNV))(fstNNV); and
(e) R -AA:Prop.AZ:A Ay:N-A-- A. Az:N.z(N-A)P(Aw:N x)z, A,
where P - Av : N -- A. Aw : N .y(ffw)(v(rr,,))
The term n, which represents the natural nuilber ri, is defined to be

,(,,(... (,o)...))

where there are n occurrences of o-.

As we saw above, it is not hard to show that FIX

0 : N,

": N-- N,

Sr:N-N, S S

and
R (VA: Prop)(A (N-. A A) -N A).

It is also easy to show that

n =. AA : Prop .Ax:A - A Ay:A. x(x(...(zv)...)), ,

where there are n occurrences of x after the last abstraction,

W0 =. 0,

wr(ei n) =. n

and also, for any type A : Prop and any terms Al and N of types A and N - A - A
respectively, """"'

RA M NO =. Ml,

and
RAM N(rn) =. Nn(RAMNn). .

It is also not hard to show that
N: Prop.

X %
=• Z.O.

' .. .. " ' "N N" " " ¢ "" " " "' '"-" "}'" .'k" " " ' ' "'" ' 
'

,/'d'', '#
r

",' , ' 5 " * ,



Z

%

We know that this definition works in the sense that we can define all primitive
recursive functions and that the peano axioms hold. However, our knowledge of the
peano axioms is entirely metatheoretic; we do not get the formulas representing these
axioms as theorems of TAC. To get the peano axioms holding formally within TAC, we
need to add some new axioms. The first two axioms we need are obvious: •

Peanol = (Vn : N)(--,'n =N 0)

and
Peano2 - (Vm : N)(Vn : N)(ayin =N --7 m =N n).

We also need the induction axiom: 0 0

Peano- (VA: N -. Prop)((Vm : N)(Am -. A(arm)) -. AO - (Vn: N)(An)).

Since the defining equations for + and x follow from the reduction properties of R and
rule (Eq"), it may appear that we have everything we need for arithmetic. :

However, we are not finished. For although the only closed terms of type N are
known to be natural numbers 9 , so that the axiom Peano does not really restrict the
domain of objects in N, we do need to be able to talk about objects in other types which 5i
are not natural numbers. We may even want to create a supertype of N, and in such a
supertype, where we will have things which are not natural numbers, we will want to be
able to assert that an object is not a natural number. To do this, we need to be able to
say that something is a natural number. And so far, we have no way of doing this that *
is part of the logic; we have only

M : N,%

which is definitely not the same thing. Thus, we need a predicate of the logic, A, which
says that something is a natural number. The definition we want is as follows:

A" = ,n : N. (VA: N -, Prop)((Vm : N)(Am-- A(o-rm))--. AO -. An). * S

It is easy to prove

-TAC f N -- Prop,
-TAC M :0, 

, %

-TAC N : (Vn : N)(Af, -- A( rn)), 0

for closed terms M and N.
Now that we have the definition of X, we no longer need the axiom Peano, for it is

easy to prove' ° that there is a closed term M such that

FTAC M : (VA : N -.-+ Prop)((Vrn : N)(Am -- A(o',n)) -- AO - (Vn : N)(Afn -, An)).

'Except for AA : PropAx : A - A. x; this term is v)-convertible to 1, but not 0-convertible. But this . k .

term is not really something other tian a natural number.
°0This in not mentioned in (Hue86] or [Hue87].

145 Sb
' . ,,' ,' ;<,, ', . , -,-,. -. .. ,..., . -, . .-, ... , .. ,.... .. ..,. ....'2'.'.'. ,a



I'

* S

While this is not exactly Peano, it is close enough for practical purposes".
This leaves us with the axioms Peanol and Peano2. These two axioms appear to

constitute a minor variation of the well-formed environment I" of Theorem 5.2. In fact, ,
a similar proof gives us the following result:

Theorem 5.3 (Q-conisisteiicy of arithmetic) If I' is

c1 : Peanol,c, : Peano2,

and if
F H'rAc It: M =A N,

where R is a closed tern, A is a type in Prop, and M and N are terms of type A, then

M N.

Corollary 5.3.1 If I' is as in the thcoremn, then it is consistent; i.e., .",.

i" ViTA: _

The theory of arithmetic we have just seen is an excellent prototype for inductively
generated free algebras, which can all be defined by similar methods' 2 . It is not strictly
necessary to have definitions for the types and constants involved: the above theory
would work just as well if N, 0, o,, and R are new atomic constants' 3 . If we do take
them as atomic constants, then Peano can be interpreted as saying that type N is assigned 0 S
only to terms in the set Af, and so we are justified in concluding the consistency of the M
system with axiom Peano added. , -,

As an example of an inductively generated free algebra, let us consider lists. To have
lists of terms of type A, we need a type List which, when applied to A, forms the type
ListA of lists of objects of type A. We also need the empty list, nilA, and the function
consA of type A - ListA - ListA which puts an object of type A at the front of a list 0 .
of objects of type A to produce a new list of objects of type A. We will want to be able
to define recursively functions on lists and objects of type A. For example, the function
append which concatenates two lists, is defined as follows, where LI and L2 are lists of
type ListA and M : A:

appendA(nilA)l, 2  L,

appendA(consAAll, )/ 2  _ consAAl(appendALI L 2 ).
1 What Peano actually does is to say that the induction principle holds formally for the type N. We *

know metatheoretically that it holds for N, but without the axiom Peano, we do not have the result as
a formial theorem of TAC. Since we do have that formal knowledge about Kr, it is difficult to imagine %
circunitaces in which this formal knowledge about N would be necessary. -.-

2 This amounts to applying to the theory of constructions the method of [BB].
"Of course, the reduct ion rules for R have t.o he pos ulated in this case. We can have confidence tha

there is no probllesn with the strong normalizationt theorem if these new constants are assumed precisely
because we can define all of theo as losed ,'rnus froin which the reduction rules for R can be deduced.

1.1(; %-1 0-1" 6,.%* .



%
% ON

lo take another example, the function reverse which reverses the ordt.r ol'a list is dli.ed

by
reverseAL -= flipAL(nilA),

where flip is defined by 0 0

flipA(nilA)L2 -- 1! 2,

flipA(consAMLI)L 2 - flipAL,(consAML,),.

To make definitions like this, we need a term which plays with respect to lists the rol,'-

that R plays with respect to N.

If turns out to be possible to define List, nil, and cons so that these recursive defini-

tions become possible:

List - AA.Prop . (Vu : Prop)((A - u i- u) -i u ),

nil -AA :Prop. AB :Prop. Af: A -1 -13. Ay: B y.0

cons -AA: Prop. Ax: A. AL: ListA. All: Prop. Af: A - 13-- B. Ay: . fx(lJ3fy).

The intention is that if L =. (r, z .  ,z,) is a list in ListA, f : A - B 13, and

y: B, then

To show that this definition works, note that if h : A - - 13 and At :B, and if y is

defined by
g = AI : ListA . I1h Al,

then g has the properties 
r N

g(nilA) I> Al,

g(consAxl,) E> h.r(gqL), 0 S

for all x : A and L : ListA. This function g allows ,,s to define append, reverse, and such .

other list functions as length, mapcar, null, car, and cdr. %. -_r, -

Just as we defined A corresponding to N, so we can define, £ correspoln(ling to List. % -%

The definition is as follows: ," .

,C -AA -Prop . A x : List A . (Vy : tistA - Prop). ., #,; ;

((V : 4) (VI : ListA)(£A £ - CA(cons.,Ii:)) -- CA(nil/1) - Cx:). ,. .. .

It is tlen easy to prow 
%.

F'TAC £ : (VA : Prop)(l istA- Prop),

F-rA(! M : (VA : Prop)(EA(nilA)),

ITAC(, N : (VA : Prop)(Vu : A)(VI ListA)(£Al -- CA(cons., 0 )).
an . If

and 
e ""-'.'

1,17 0 5

%-.,

.1-. ,. %,.'e ',



*
% S

F-"rAC P (VA Prop)(VB: ListA -- Prop)
((Vu A)(VI : ListA)(BI -- B(consAui)) -- /I(niIA) -- (Vi ListA)(i BI)),

for some closed terms M, N, and P. This gives us the desired induction property on
lists. All we still need are axioms corresponding to Peanol and Peano2: S

(VA: Prop)(Vx : A)(Vy : A) (VI: ListA)(Vin: ListA)
(consAxl =LiotA consAym - x =A y Al =Li=, n6),

antd

(VA Prop)(Vx : A)(VI: ListA)(-.consAxl =LimtA nilA). 9

A modification of the proof of Theorem 5.3 shows that these two axioms are consistent.

* %

N

* •S

%

t -.

N

* S
*%

%0

k--* 1-1%



0

5.4 Representing sets and functions

We spoke in the last section of the predicate AK of natural numbers. But most math-
ematicians prefer to think of the set of natural numbers. This point of view is easily
accommodated in the theory of constructions, since it is easy to think of a predicate as
a set 14 .

Thus, suppose we have some type U : Prop or U : Type. Then we may think of U as
the current universe. Sets over U are defined to be predicates of type U -* Prop. More
formally, we may define

Setu U -* Prop.

In terms of this definition, A( : SetN and, if A : Prop, CA : Seth.uWA. If A : Setv, then we
define z E A to be Ax. The set {x : UIE} is defined to be Ax U . E. Inclusion of set
A in set B can be defined by

A C H - (Vx : U)(x E A --. x E B)

and the corresponding equality by 0 0

A =B= AC BA I)CA.

A special intensional equality on U can bec defined as follows:

-y -(VA: Set)(xE A -. yE A).
.0 0

Many of the usual sets and set. operations can be easily defined. For example:

0 { X : I1

An))- {x :Ukx E AAx E ),

AUB= {x : UI: C AVx EB E , 0 )

and

A -{x : Ul- x E Al.

When no confusion results, we can leave out. 1 and write {xIE},Set. etc.
It is important to remenber the constructive nature of the logic. This meaus that

the set operations given above are not exactly like those in ordinary nuthenatic.s. I"or •

example, we have
AC-- A,

but not, in general, the converse.
One operation on sets that we do not have here is the power set operation. For the

power set. of A, i.e. the set of all sitbsets of A, is defined by

"PA- Al : Set. I C A,

1''1his material ik hased oi tie w,,rk of ih ,et hIW], (thapi ,.r 12 and (1Ih1e87.

1-19 *t

'P



.V o

and the type of PA is not Set, which is A -- Prop, but instead Set-- Prop. Terms of
type Set -- Prop will be called classes, and we will give the formal definition b !

Classu = Setu - Prop. Lk

Since U can be replaced by Setu, all set operations are also class operations. We can
define other class operations, for example

flC - {xj(VA : Set)(CA - x E A)},

and
U C {xI(3A :Set)(CA A E A)}. -

We can also define the singleton in terms of classes:

ix} Fn(AA: Set. x E A).

With these definitions,
A(: SetN. ! r

We know metatheoretically that the closed terms which are elements of the set A are
exactly the closed terms of type N. Thus, the set A represents the type N in a special
way. There is no known uniform method of defining sets to represent types for arbitrary
types that does not require extra axioms s . .

Most mathematicians think of functions as sets of ordered pairs, but this conception
is not really appropriate here. For we already have functions built into the theory
of constructions as primitive. A function is simply a term assigned to a type of the . .

form (Vx : A)B. Functions can, of course, be elements of sets, especially if the sets
correspond to types the way K corresponds to N. Since a set corresponding to a type A
is a term of type A - Prop, a set of functions from type A to type B is a term of type
(A --- B) - Prop. To say that a function f is a function from set A to set B, we use the * 0
type , , .r7

(Vx: U)(x E A -p fX E B)."6 ~

It follows that the set of functions from set A to set B is

Af : U - U. (Vx : U)(x E A -- fx c B). -.-,.*A

If f: U U, then for A : Set we can define 0 -.

Preservef A =-(Vx :U)(x E A -* fx E A).

In terms of this operator, the induction axiom Peano can be written as , .

Peano =. (VA : N -- Prop)((Preserve o'A) - 0 E A -- (Vn: N)(n E A)),

'SIt is, of course, possible to add an axiom of the for, AM for each closed term M: A, where A is a

type and A is the set intended to represent it, but miany of these axioms are likely to upset the proof ,
of strong normnalization.?

" Naturally we mLst have f :U U/ (I.

150 S

* 0

;_. 11-



* S

and the definition of M as

gr =. An : N .(VA: N- Prop)(Preserve A -0 CE A-n C A).

This may help to show how to standardize the definition of inductively defined free
algebras. 0

This much set theory is sufficient for most practical mathematical purposes, but from-
the point of view of a set theorist it is incomplete. Its major weakness is that if A is o
set, PA is not a set but a class; in the standard set theories it is also a set. To make
this a set, we would need to have Set include not only the terms in U -* Prop but also in
(U - Prop) - Prop, ((U -- Prop) .- Prop) - Prop, etc. This can be represented inl the
theory of constructions as follows:' 7 first define 0 0

Set, bJ - Prop,

Set,+,i Set,, - Prop.

Then we want to introduce a new type Set which will be assigned to terms in any of the
types Set,. This requires that each type Set,, be a subtype of Set. 0

There is a general method of making type A a subtype of type B: it is to take as an,
assumption

Ax:A.: x: A-I.

From this assumption and A :A, we get (Ax: A x)M : 1, and clearly (Ax A . x)M
represents the same object as M; in fact, it reduces to M. Assumptions of this form *
have not been considered so far in the theory of constructions, and cannot occur in well-
formed environments. lowever, they have been considered in connection with ordinary
type assignment; see [CIIS72], pp. 453 amd 304, where they are called proper inclusions.
Furthermore, conditions uinder which these assuimmptions are comp~atib~le with the normnal
formn theorem are given in [Sel77I Remark 2 p. 23. It, is possible to extend condition (i)
of that Remark to "fAC:

Theorem 5.4 (Consistency of proper inclusions) Let I' bc a well-formed enriron-
ment, and let F' be a sequence of assumptions each of which has the fori

Ax:A . : A-. IB,

where 1B is an atomic constant, the assurfplion B? :. occurs in 1', aid /I - is not a S S
type in F' for any type C. Then any deduction of

is strongly normaliz-able and both A/ and A hatve norm~al forms.

Proof We begin by proving that tie required dedhuclions are SN. IBegin by replacing in 5 5
each assumption in I" tihe ternm A" : A . x by a variable which docs not cicur free in cit her

" T is iq not don! in [I hit-86 or [11i gt,7).

151
L



... L~~. , .-.--- , - . ..- ; - .-' .- - -:, ''' ' ",tl

F or F', using a distinct, variable for each such assumption. The resulting deductions
are all SN by Theorem 4.14. Hence, the deductions in which we are interested, which
are all obtained by substituting terms for variables, are also all SN.

Now let us consider the terms in these deductions. These terms may contain redexes
of the form

(Ax: A . x)M.

A contraction will replace this redex by M. What we need to know is that this will
not produce a new red.x. This could only happen if the original redex occurred in a
subterm of the form

(Ax : A . x)MN, N.,... Nn,,

and since the type of
(Ax: A . x)M

is B, which is by hypothesis a new constant and hence not convertible to the form
(Vy : C)D, this is impossible. U

Now, in order to interpret a set theory in which the power set of a set is a set, we
need only define Set, as indicated above for each n > 1, define Set to be a new atomic
constant, assume Set : Prop or Set : Type, and then assume

Set,, : Set

for each n > 11'. It follows from what we have just proved that this is consistent; for ]

Set is essentially the union of all the Set,,, and in any given deduction, it will be possible 'x .

to replace Set by the union of a finite number of the Set,, and thus avoid using any new
assumptions.

* 0]

'^[Ihis iivl lv,.s nfill itc iiiiil r *f sillilS, hut I hey 'I ',allI bw ,le ,'ribed in a finite misutuner,
a,,,, it i ,, ,,,..,1,: .l ,,,ivo ,,,..... ,,,,,,1 S1IIOI 11 ,1,il ,.,., Ill' %,,,,,,.,, , " N

152

* 0



AND* SYTM

Apgvn npendix A

Hereue are listed i the vaiuorulates which hei aerin tois docurst adth.

(...Formation): TAJ, TAT

(-e): TA, TAP, TMJ, TAT
(+i): TA, TAP; (alternate fornm) TAJ, rAT

(V Formation): TAGU
(Ye): TAP; (another sense) NJ*; (another sense) TAGIU, TAG
(Vi): TAP; (another sense) NJ* *
(Vir-ormation): TMJ
(Vie): TAJ
(Vi i): TAJ
(VP): TAGS
(VPi): TAC
(VT): TAGS

(Vii): TAC .

(VU i): TAG U
(VetFormation): TAT i

(Vote): TAT, TAG
(Vai): TAT, TAG

(~:TA; (another sense) TAGS
(~:TAP, TAJ, TAT, TAG, TAG U, 'FAC

Al ~ ~ 0J~W-



(c): TAT
(c m e): A]), AT
(C e): NA (C), NJ, NJ*
(C i): NAJ, N, N
(Ai): NJ, NJ*

(ye): NJ, NJ*
(Vi): NJ, NJ*
(-e): Derived in NJ, NJ*
(-i): Derived in NJ, NJ*
(I #) NJ, NJ*
(I jq): added to extended TA

(3e): NJ*
(3i): NJ* 0

(3iFormation): TA]

(3ie): TA]

(p,): TA]

(void): TA]
(xFormation): TA]
(xe)1 : TA] J

( xe) 2: TIA] J* 0
(xi0: TA]

(+Formnation): TA]
(+c): TA]
(+I),: TA]

(+i)2: TA] * 0
(Eq"): TAG, TIAGU, 'FAG,TAGS '
(Eqj'U): TAG U
(1-q('P): TAG, 'lAGS

(Eq'T): TAG, TACS
(P): TIAGS

(PT): 'rAC U (aniother seiise) 'I'MS

15.1



(PT Fornation): TAC
(T): TACS

(TP Formation): TAC
(TT Formation): TAC

(App): TACS, 0

(var): TACS
(Ai): TACS

* 0

% %

S *,' .-.!

-" * ". . ", .

.- , .-'"

% i

'554 lb



d0

Appendix B

SYSTEMS AND THEIR
DEFINITIONS

Here is a list of systems and their definitions.

NA(D): Definition 3.2.

NJ: Definition 3.4.

NJ*: Definition 3.6.

TA: Definition 2.1.

Extended TA: Remark after Corollary 2.2.3 (end of Section 2.1).

TAC: Definition 4.2. S

TACS: Definition 4.21.

TAG: Definition 2.22.

'IAGU: Definition 2.24.

TAJ: Definition 3.10.

TAP: Definition 2.12.

TAT: Definition 3.12.

156,

..... .... 0r



*

Bibliography

* 0

[BB] Corrado Bohm and A. Berarducci. Automatic synthesis of typed lambda-
programs on term algebras. Unpublished.

[Bee85] M. Beeson. Foundations of Constructive Mathematics. Springer, Berlin,
1985.

[C*861 R. Constable et al. Implementing Mathematics with the Nup:', Proof Devel-
opment System. Prentice Hall, Englewood Cliffs, New Jersey, 1986. ,

[Car86] Luca Cardelli. A Polymorphzc A-calculus with 'ypc : Type. Technical Re-
port, Systems Research Center of Digital Equipment Corporation, Palo Alto,
California, May 1986.

[CF58] laskell Brooks Curry and Robert F eys. Combinatory Logic. Volume 1,
North-Holland Publishing Company, Amsterdam, 1958. Reprinted 1968 and
1974.

[CH] Thierry Coquand and Gdrard lluet. Concepts mathnatiques et informa-
tiques formalisks dans le calcul des constructions. Colloque de Logique, Orsay •
(July 1985), North-llolland, forthconiug. V

(C11841 Thierry Coquand and G, rard Iluet. A theory of constructions. June 1984.
Presented at the International Symposium on Semantics of Data 'Types,
Sophia-Antipolis.

[Ci86] Thierry Coquand and (.6rard lluet. Constructions: a higher order proof 0 •
system for mechanizing rnathenatics. In Springer Lecture Notes in Computer ,
Science 203, pages 151 -18.1, Springer-Verlag, Berlin, 1986. % ,

[Ci!S72] laskell Brooks Curry, J. iloger llidley, and Jonathan 1. Seldin. Combina-
tory Logic. Volume 2, North-Ilolland publishing Company, Amsterdam and-"
London, 1972.

[Chu40] Alonzo Church. A formalization of the simple theory of types. Journal of
Symbolic Logic, 5:56 68, 1940.

157 •

06
VN*

J, 14



0

I S

[Coq] Thierry Coquand. Metamathematical investigations of a calculus of construc-
tions. Received February 9, 1987.

[Coq85) Thierry Coquand. Une Thiorie des Constructions. PhD thesis, University
of Paris VII, 1985.

[Coq86a] Thierry Coquand. An analysis of Girard's paradox. In Symposium on Logic
in Computer Science, pages 227-236, IEEE Computer Society, IEEE Corn-
puter Society Press, 1986.

[Coq86b] Thierry Coquand. A calculus of constructions. November 1986. Privately -.
circulated. 0

[CR36] Alonzo Church and J. B. Rosser. Some properties of conversion. Transactions
of the American Mathematical Society, 39:472-482 1936.

[Cur63] ilaskell Brooks Curry. Foundations of Mathematical Logic. McGraw-Hill
Book Company, Inc., New York, San Francisco, Toronto, and London, 1963.
Reprinted by Dover, 1977 and 1984. 0 0

[DaaS0] Diederik Ton van Daalen. The Language Theory of A UTOMATH. PhD
thesis, Technische Hogeschool E indhoven, February 1980.

[Fit52] Fredric Brenton Fitch. Symbolic Logic. The Ronald Press Company, New r

York, 1952. ,

[FLO83] S. Fortune, Daniel Leivant, and Michael J. O'l)onnell. The expressiveness ,
of simple and second order type structures. Journal of the Association for
Computing Machinery, 30:151-185, 1983.

[Gen34] Gerhard Gentzen. Untersuchungen iber das logische Schliessen. Mathema-
tische Zeitschrift, 39:176-210, 405-431, 1934. Translated in Sabo (ed.), The

Collected Papers of Gerhard Gentzen as "Investigations into Logical Deduc- * -

tion".

[Gir7l] Jean-Yves Girard. Une extension de I'interpr~tation de G6del I'analyse, et
son application I'6limination des coupures dans l'analyse et la thiorie des %, - '
types. In J. E. Fenstad, editor, Proceedings of the Second Scandinavian Logic 4'.\"'% .
Symposium, pages 63-92, North-l lolland, Amsterdam, 1971. S S

[GN1W79] M. J. Gordon, J. Milner, and C. P. Wadsworth. Edinburgh LCF: A Mecha-
nized Logic of Computation. Springer Verlag, 1979. Lecture Notes in Corn- , -
puter Science 78.

[llow8O] W. A. lloward. 'l'le formulae-as-types notion of construction. In J. Roger
Ilindley and Jonathan P. Seldin, editors, To H. 1). Curry: Essays on Coin- ]
banatory Logic, Lambda Calculus and Formalism, pages 479-490, Academic

Press, New York, I98(. A version of this paper was privately circulated in %

1594!

lr)e



-=, -; "

[I1S86] J. Roger Ilindley and Jonathan P. Seldin. Introduction to Combinators and
A-calculus. Cambridge University Press, 1986.

[Hue86] Girard Huet. Formal structures for computation and deduction. May 1986.
Course Notes, Carnegie-Mellon University, First Edition. 0

[Hue87] Girard Huet. Induction principles formalized in the calculus of constructions.
In Springer Lecture Notes in Computer Science 249, pages 276-286, Springer- %
Verlag, 1987.

[Jas34] Stanislaw Jaikowski. On the rules of supposition in formal logic. Studia
Logica, 1:5-32, 1934. 0 0

[Mar7la] Per Martin-Libf. Hanptsatz for the theory of species. In J. E. Fenstad, editor,
Proceedings of the Second Scandinavian Logic Symposium, pages 217-233,
North-Holland Publishing Company, Amsterdam and London, 1971.

[Mar7lb] Per Martin-Lof. A theory of types. February 1971. Revised October 1971. 0
Privately circulated... .

4. ... *4

[Mar73] Per Martin-Lof. Hauptsatz for intuitionistic simple type theory. In Patrick -, -'

Suppes, Leon Ilenkin, Athanase Joja, and Gr.C. Moisil, editors, Logic,
Methodology, and Philosophy of Science IV, pages 279-290, International I ' -" .. ,P
Congress for Logic, Methodology, and Philosophy of Science, Bucharest, 1971, 4%p
North-Holland Publishing Company, Amsterdam and London, 1973. • S

[Mar75] Per Martin-Lof. An intuitionistic theory of types: predicative part. In It. E.
Rose and J. C. Shepherdson, editors, Logic Colloquium '73, pages 73-118, %
Nq- h Holland Pubhishing Company, Amsterdam, 1975.

[Mar82] Per Martin-Lbf. Constructive mathematics and computer science. In L. J.
Cohen, J. Los, 11. Pfeiffer, and K.-P. Podewski, editors, Logic, Afethodol-
ogy and Philosophy of Science VI, pages 153--175, North-Ilolland Publishing
Company, Ainsterdam, 1982. ,?.

[Mar84] Per Martin-Lbf. Intuitionistic type theory. Bibliopolis, Naples, 1981. Notes -, ,

by Giovanni Samnbin of a series of lect ures given in Padua, June 1980. ,'-'.-' .

[Mil78] R. Milner. A theory of type ipolymorphisi int programming. Journal of r%,.P

Computer and System Science, 17:3.18-375, 1978. %

[Mil85] R. Milner. The standard ML core language. Polymorphism, 2, 1985.

[Mit86] Joh;i C. Mitchell. A type-inference approach to reduction properties and .',-' '
semantics of polymorphic expressions (summary). In Proceedings of the __•

1986 ACM Conference on LISP and Functional Programming, pages 308-
319, 1986.

159 *

Ja-* 0-op o
ZV '.' V S

" " p~-'= I/ V % ,- V =r r • R • " " " % % * = " " ",'. % ." ' - * € =



[Pot87] Garrel Pottinger. Two formulations of the theory of constructions. January -
1987. Technical report in preparation, Odyssey Research Associates.

[Pra65] Dag Prawitz. Natural Deduction. Almqvist & Wiksell, Stockholm, Goteborg,

and Uppsala, 1965.

[Rey74] J. C. Reynolds. Towards a theory of type structure. In Springer Lecture

Notes in Computer Science 19, pages 408--425, Springer-Verlag, 1974.

[Rey84] J. C. Reynolds. Polymorphism is not set-theoretic. In Springer Lecture Notes
in Computer Science 173, pages 145-156, Springer-Verlag, 1984.

[Ros84] J. B. Rosser. Highlights of the history of the lambda-calculus. Annals of the
History of Computing, 6:337-339, 1984.

[Sel77] Jonathan P. Seldin. A sequent calculus for type assignment. Journal of
Symbolic Logic, 42:11-28, 1977.

[Ste72] Soren Stenlund. Combinators, Lambda-Terms and Proof Theory. D. Reidel, 0 0
Dordrecht, Holland, 1972.

Lp

0

0 0

"N
16() 

0
%I ~

~%



%~.

MISSION
Of

Rome Air Development Center
RAVC ptan4 and executeA t4eatch, devetopment, teAt
and Aeeceted acqui6Ltion ptog'LamA in 4uppoJLtt ad

*Command, Cont,%ot, CommunicationA and Intetigence
(C31) aectivitiez. Teehnicat and engineexing
6(LppotLt within ateaA o6 competence LaS p4ovided to
ESV Ptogtam 066iee.6 (P0.6) and aothea ESV e.tementAS
to pe4%jotm e66ective acquiAiZtion o6 C31 4y~&temaS.
The ateaS o6 techniat competence inelude
communicatioau, command and cont4ot, batte-
management, indoaination ptoce~zing, 6&veittance
.Aen~o4, intettigence data cottection and handting, f
:6otid 4-tate .6cleneaS, etecttamagneticeh, and

4 ~p4opagation, and etecttonic, maintainabitity, .

and can'patib-Ltity.PO

%



0

S

S

I.

S

S

-I S

.~\

S

L

p *

'Ii.


